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Quantitative structure–activity relationships (QSAR) for toxicity of binarymixtures (expressed as pEC50 (i.e. log
[1/EC50], logarithm of the inverse of the effective concentration required to bring about a 50% decrease in light
emission), for Photobacterium phosphoreum) have been developed. The simplified molecular input-line entry
system (SMILES) was used as the representation of the molecular structure of components of binary mixtures.
Using the Monte Carlo technique the SMILES-based optimal descriptors were calculated. One-variable correla-
tions between the optimal descriptors and toxicity of the binarymixtures were analyzed to develop a predictive
model. Six random splits of the data into sub-training, calibration, and test sets were tested. A satisfactory statis-
tical quality of the model was achieved for each above-mentioned split.

© 2012 Published by Elsevier B.V.

1. Introduction

Toxicity represents a complex phenomenon, investigated by both
experimental techniques and computational methods. Quantitative
structure–activity relationships (QSARs) are a tool for prediction of
various endpoints, in general [1–8], and for toxicity, in particular
[9,10]. Prediction of toxicity becomes even more complicated when
toxicity is caused by a number of factors, not a single chemical com-
pound. Data on toxicity of mixtures, in general, and on toxicity of binary
mixtures, in particular, is important from ecological point of view. There
are several studies related to this issue [11–14]. However, due to its im-
portance and complexity, novel approaches that could generate larger
pool of data are needed. In this study we tested the CORAL software
[15–19] as a possible tool to model the toxicity of binary mixtures.

2. Method

2.1. Data

The numerical data on the toxicity of binary mixtures was taken
from the literature [11]. The toxicities are expressed as pEC50 (i.e.
negative decimal logarithm log[1/EC50]), logarithm of the inverse of
the effective concentration required to bring about a 50% decrease in
light emission, for Photobacterium phosphoreum (T3 mutation). Table 1
contains the list of substances which are components of the binarymix-
tures. The SMILES used for the representation of the binarymixtures are

displayed in the Table 2. In this study six splits into the sub-training set,
calibration set, test set, and validation set were examined. These splits
were carried out according to the following principles: (i) the range of
the endpoint should be similar for each set; and (ii) the distribution of
data into above-mentioned sets should be different for each split. The vali-
dation set represents a list of substances which are not involved in the
process of the building up a model.

2.2. Optimal SMILES-based descriptor

The optimal descriptor used in this study is calculated as follows:

DCW T;Nð Þ ¼ Σ CW Skð Þ þ Σ CW SSkð Þ þ Σ CW SSSkð Þ ð1Þ

where Sk, SSk, SSSk are attributes of SMILES notation [20]. The Sk, SSk, and
SSSk contain one, two, and three SMILES elements, respectively; the ele-
ment of SMILES often is one character (e.g. ‘c’, ‘C’, ‘=’, etc.) but also it can
be more than one character (e.g. ‘Cl’, ‘Br’, etc); the CW(Sk), CW(SSk),
CW(SSSk) are correlation weights of SMILES attributes which represent
various molecular features extracted from SMILES. By means of the
Monte Carlo method optimization procedure [15–19] one can calculate
correlation weights which yield the maximum for target function calcu-
lated as:

TF ¼ R þ R′� R � R′j j � C ð2Þ

where R and R′ are correlation coefficients between DCW(T,N) and
pEC50 for sub-training set and calibration set; C is an empirical constant
equal to 0.1. Table 3 contains an example of the representation of the
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SMILES attributes and their correlation weights. An example of the
DCW(T,N) calculation for binary mixture is shown in Table 4.

In general, the correlation coefficients between experimental values
of an endpoint and the value calculated with the optimal descriptor are
mathematical functions of the threshold. The threshold represents a co-
efficient for division of the SMILES attributes into two categories: rare
and active (Fig. 1), and the number of the epochs of the optimization
(Fig. 2). The SMILES for representation of the binary mixtures were com-
binations of two SMILES of pure components of themixture separated by
‘.’ [20].

3. Results and discussion

Table 5 shows the statistical quality of the model for the toxicity of
binary mixtures obtained by means of six different splits of the data
into the sub-training, calibration, and test sets. The threshold and the
number of epochs of the Monte Carlo optimization were selected in
order to obtain the best statistical quality for the test set. One can see
that preferable threshold and the number of epochs are not identical
for the examined splits.

It should be noted that the balance of correlations [21] (i.e., the split
into the sub-training, calibration and test set) provides for all six ran-
dom splits considerably better statistical quality of the prediction, in

comparison to the “classic scheme” (i.e. the split into training and test
sets without calibration). In the case of the balance of correlations the
calibration set plays the role of a “preliminary test set”. The preliminary
test of amodel gives possibility to avoid, or at least to decrease the prob-
ability of the overtraining [21–26].

The statistical characteristics of the models for six splits calculated
with the preferable threshold (T*) and the number of epochs (N*ep)
are the following:

Split 1
pEC50 ¼ −0:0090 �0:0678ð Þ þ 0:1148 �0:0022ð Þ � DCW 2;10ð Þ
n ¼ 14; r2 ¼ 0:9584; q2 ¼ 0:9426; s ¼ 0:167; F ¼ 277 Sub−training setð Þ
n ¼ 14; r2 ¼ 0:9566; s ¼ 0:125 calibration setð Þ
n ¼ 10; r2 ¼ 0:9362; s ¼ 0:200;R2

m ¼ 0:7164;ΔR2
m ¼ 0:1108 cR2

p

¼ 0:7006 test setð Þ
n ¼ 12; r2 ¼ 0:9454; s ¼ 0:404;R2

m ¼ 0:6043;ΔR2
m

¼ −0:1671 validation setð Þ
ð3Þ

Table 1
Structure of components of the binary mixtures.

1 71-43-2 c1ccccc1

2 108-90-7 Cl Clc1ccccc1

3 108-86-1 Brc1ccccc1

4 106-46-7 Clc1ccc(Cl)cc1

5 106-39-8 Clc1ccc(Br)cc1

6 106-37-6 Brc1ccc(Br)cc1

7 87-61-6 Clc1cccc(Cl)c1Cl

8 56961-77-4 Clc1cccc(Br)c1Cl

9 108-95-2 Oc1ccccc1

10 120-83-2 Clc1cc(Cl)c(O)cc1

11 62-53-3 Nc1ccccc1

12 95-76-1 Nc1cc(Cl)c(Cl)cc1

Table 2
SMILES which have been used for representation of the binary mixtures and numerical
data on the pEC50.

No. Comp1+Comp2 SMILES pEC50

1 1+2 c1ccccc1.Clc1ccccc1 2.85
2 1+3 c1ccccc1.Brc1ccccc1 2.99
3 1+4 c1ccccc1.Clc1ccc(Cl)cc1 2.94
4 1+5 c1ccccc1.Clc1ccc(Br)cc1 3.03
5 1+6 c1ccccc1.Brc1ccc(Br)cc1 2.96
6 1+7 c1ccccc1.Clc1cccc(Cl)c1Cl 3.02
7 1+8 c1ccccc1.Clc1cccc(Br)c1Cl 2.98
8 2+3 Clc1ccccc1.Brc1ccccc1 3.73
9 2+4 Clc1ccccc1.Clc1ccc(Cl)cc1 3.88
10 2+5 Clc1ccccc1.Clc1ccc(Br)cc1 3.97
11 2+6 Clc1ccccc1.Brc1ccc(Br)cc1 3.96
12 2+7 Clc1ccccc1.Clc1cccc(Cl)c1Cl 3.89
13 2+8 Clc1ccccc1.Clc1cccc(Br)c1Cl 3.90
14 3+4 Brc1ccccc1.Clc1ccc(Cl)cc1 3.98
15 3+5 Brc1ccccc1.Clc1ccc(Br)cc1 4.09
16 3+6 Brc1ccccc1.Brc1ccc(Br)cc1 4.02
17 3+7 Brc1ccccc1.Clc1cccc(Cl)c1C 4.06
18 3+8 Brc1ccccc1.Clc1cccc(Br)c1C 4.04
19 4+5 Clc1ccc(Cl)cc1. Clc1ccc(Br)cc1 4.36
20 4+6 Clc1ccc(Cl)cc1. Brc1ccc(Br)cc1 4.34
21 4+7 Clc1ccc(Cl)cc1. Clc1cccc(Cl)c1Cl 4.38
22 4+8 Clc1ccc(Cl)cc1. Clc1cccc(Br)c1Cl 4.39
23 5+6 Clc1ccc(Br)cc1. Brc1ccc(Br)cc1 4.49
24 5+7 Clc1ccc(Br)cc1. Clc1cccc(Cl)c1Cl 4.65
25 5+8 Clc1ccc(Br)cc1. Clc1cccc(Br)c1Cl 4.55
26 6+7 Brc1ccc(Br)cc1. Clc1cccc(Cl)c1Cl 4.62
27 6+8 Brc1ccc(Br)cc1. Clc1cccc(Br)c1Cl 4.45
28 7+8 Clc1cccc(Cl)c1Cl. Clc1cccc(Br)c1Cl 4.70
29 2+9 Clc1ccccc1. Oc1ccccc1 3.03
30 2+10 Clc1ccccc1. Clc1cc(Cl)c(O)cc1 3.42
31 2+11 Clc1ccccc1. Nc1ccccc1 2.45
32 2+12 Clc1ccccc1. Nc1cc(Cl)c(Cl)cc1 3.67
33 3+9 Brc1ccccc1. Oc1ccccc1 3.28
34 3+10 Brc1ccccc1. Clc1cc(Cl)c(O)cc1 3.77
35 3+11 Brc1ccccc1. Nc1ccccc1 2.68
36 3+12 Brc1ccccc1. Nc1cc(Cl)c(Cl)cc1 3.91
37 7+9 Clc1cccc(Cl)c1Cl. Oc1ccccc1 3.39
38 7+10 Clc1cccc(Cl)c1Cl. Clc1cc(Cl)c(O)cc1 4.27
39 7+11 Clc1cccc(Cl)c1Cl. Nc1ccccc1 2.63
40 7+12 Clc1cccc(Cl)c1Cl. Nc1cc(Cl)c(Cl)cc1 4.29
41 8+9 Clc1cccc(Br)c1Cl. Oc1ccccc1 3.42
42 8+10 Clc1cccc(Br)c1Cl. Clc1cc(Cl)c(O)cc1 4.66
43 8+11 Clc1cccc(Br)c1Cl. Nc1ccccc1 2.91
44 8+12 Clc1cccc(Br)c1Cl. Nc1cc(Cl)c(Cl)cc1 4.52
45 9+10 Oc1ccccc1. Clc1cc(Cl)c(O)cc1 3.11
46 9+11 Oc1ccccc1. Nc1ccccc1 2.50
47 9+12 Oc1ccccc1. Nc1cc(Cl)c(Cl)cc1 3.16
48 10+11 Clc1cc(Cl)c(O)cc1. Nc1ccccc1 2.60
49 10+12 Clc1cc(Cl)c(O)cc1. Nc1cc(Cl)c(Cl)cc1 4.44
50 11+12 Nc1ccccc1. Nc1cc(Cl)c(Cl)cc1 2.50
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Split 2
pEC50 ¼ −0:0014 �0:1508947ð Þ þ 0:1630 �0:0063ð Þ � DCW 3;11ð Þ
n ¼ 16; r2 ¼ 0:9400; q2 ¼ 0:8931; s ¼ 0:188; F ¼ 219 Sub−training setð Þ
n ¼ 12; r2 ¼ 0:9606; s ¼ 0:137 calibration setð Þ
n ¼ 11; r2 ¼ 0:9124; s ¼ 0:248;R2

m ¼ 0:8183;ΔR2
m ¼ 0:0903

c
R2
p ¼ 0:7344 test setð Þ

n ¼ 11; r2 ¼ 0:9616; s ¼ 0:191;R2
m ¼ 0:8469;ΔR2

m ¼ 0:0500 validation setð Þ

ð4Þ

Split 3
pEC50 ¼ 1:2380 �0:1016ð Þ þ 0:1296 �0:0049ð Þ � DCW 3;17ð Þ
n ¼ 12; r2 ¼ 0:9664; q2 ¼ 0:9357; s ¼ 0:108; F ¼ 288 Sub−training setð Þ
n ¼ 15; r2 ¼ 0:9560; s ¼ 0:318 calibration setð Þ
n ¼ 10; r2 ¼ 0:9451; s ¼ 0:158;R2

m ¼ 0:8507;ΔR2
m ¼ 0:0612 cR2

p ¼ 0:7335 test setð Þ
n ¼ 13; r2 ¼ 0:9815; s ¼ 0:175;R2

m ¼ 0:7574;ΔR2
m ¼ 0:0677 validation setð Þ

ð5Þ

Split 4
pEC50 ¼ 0:0012 �0:1285ð Þ þ 0:1205 �0:0037ð Þ � DCW 2;11ð Þ
n ¼ 10; r2 ¼ 0:9745; q2 ¼ 0:9529; s ¼ 0:103; F ¼ 306 Sub−training setð Þ
n ¼ 13; r2 ¼ 0:9556; s ¼ 0:199 calibration setð Þ
n ¼ 10; r2 ¼ 0:9369; s ¼ 0:282;R2

m ¼ 0:6158;ΔR2
m ¼ 0:1646 cR2

p

¼ 0:8053 test setð Þ
n ¼ 17; r2 ¼ 0:8649; s ¼ 0:263;R2

m ¼ 0:7299;ΔR2
m ¼ −0:1399 validation setð Þ

ð6Þ
Split 5
pEC50 ¼ −0:0144 �0:1269ð Þ þ 0:0969 �0:0029ð Þ � DCW 1;5ð Þ
n ¼ 12; r2 ¼ 0:9409; q2 ¼ 0:9105; s ¼ 0:197; F ¼ 159 Sub−training setð Þ
n ¼ 10; r2 ¼ 0:9549; s ¼ 0:155 calibration setð Þ
n ¼ 14; r2 ¼ 0:8602; s ¼ 0:355;R2

m ¼ 0:4693;ΔR2
m ¼ 0:2911 cR2

p

¼ 0:7840 test setð Þ
n ¼ 17; r2 ¼ 0:8649; s ¼ 0:263;R2

m ¼ 0:7299;ΔR2
m ¼ −0:1399 validation setð Þ

ð7Þ
Split 6
pEC50 ¼ −0:0053 �0:0619ð Þ þ 0:1306 �0:0021ð Þ � DCW 1;10ð Þ
n ¼ 14; r2 ¼ 0:9586; q2 ¼ 0:9454; s ¼ 0:129; F ¼ 278 Sub−training setð Þ
n ¼ 14; r2 ¼ 0:9359; s ¼ 0:219 calibration setð Þ
n ¼ 11; r2 ¼ 0:9374; s ¼ 0:204;R2

m ¼ 0:8834;ΔR2
m ¼ 0:0619 cR2

p

¼ 0:7705 test setð Þ
n ¼ 11; r2 ¼ 0:9592; s ¼ 0:174;R2

m ¼ 0:7595;ΔR2
m ¼ −0:0798 validation setð Þ

ð8Þ

The predictability of models calculated with Eqs. (3)–(8) has been
checked with: (i) R2

m (a model has desired predictability if R2
m >0.5

[27–29]); (ii) ΔRm2 (a model has desired predictability if ΔRm2 b0.2
[27–29]); and (iii) cRp

2 (this characteristic should be larger than 0.5
[30]) metrics. The only model developed here for split 5 is unsatisfac-
tory, according to these criteria (R2

m and ΔRm2 in Eq. (7)). In many
cases a QSPR/QSAR analyses are based on one split into the training
and test sets. We believe that consideration of a group of splits repre-
sents a more informative approach.

Having results of three runs of the Monte Carlo optimization, one
can divide the SMILES attributes (which are representation of various
molecular features) into three categories: (i) stable promoters of
pEC50 increase (correlation weights are positive in the three runs
of the Monte Carlo optimization); (ii) ) stable promoters of pEC50

decrease (correlation weights are negative in the three runs of the
optimization); and (iii) attributes which possess an unclear role, since
there are both positive and negative correlation weights [31,32]. Our
computational experiments show that the presence of chlorine, bromine
and oxygen is the promoter of pEC50 increase. On the other hand, the
presence of nitrogen is the promoter of pEC50decrease. Thus, themodels
calculated using Eqs. (3)–(8) have the mechanistic interpretation.

The statistical quality of four-variables model (calculated with in-
volvement of the quantum mechanics descriptors) suggested in the
literature [11] for the toxicity of the same 50 binary mixtures is the
following: n=50, r2=0.85, s=0.270. The models calculated by
Eqs (3)–(8) for sets which involve sub-training, calibration, and test
set, but without validation set, are characterized by n=38, r2=0.9498,
s=0.156 (split 1); n=39, r2=0.9296, s=0.186 (split 2); n=37,
r2=0.9225, s=0.218 (split 3); n=33, r2=0.9369, s=0.197 (split 4);
n=36, r2=0.8920, s=0.241 (split 5); n=39, r2=0.9350, s=0.179
(split 6). Thus for all cases the CORAL software gives models which
are better than the above-mentioned model [11].

The supplementary material section contains details of six splits into
the sub-training, calibration, and test sets which are analyzed in this
study.

4. Conclusions

We concluded that CORAL can be efficiently used for modeling of the
toxicity of binary mixtures. The split into the sub-training, calibration,

Table 3
List of molecular features extracted from SMILES and their correlation weights
(Split 1).

SAk CW(SAk) NTRN NCLB NTST

(........... 0.0 12 14 9
(…Br..(… 1.19150 6 6 6
(…Cl..(… 0.68950 9 9 6
(…O…(… −0.25100 2 4 1
(…c…(… 1.00100 3 6 3
1........... −0.50000 14 14 10
1…c…(… 1.25100 7 7 5
C........... 0.0 0 1 1
C…1....... 0.0 0 1 1
Br..(....... 1.25300 6 6 6
Br.......... 2.12500 7 7 9
Br..^…1… 1.87100 4 1 0
Br..c…1… 3.43550 5 2 5
Cl..(....... 1.31350 9 9 6
Cl.......... 1.18750 13 13 10
Cl..1....... −1.00300 7 6 4
Cl..^…1… −0.25100 3 8 7
Cl..^…Cl.. 0.0 1 1 0
Cl..c…1… 3.62700 12 13 9
N........... 0.31050 4 4 2
N…^…1… 1.87300 3 2 1
N…^…Cl.. 0.0 1 2 1
N…c…1… −1.12900 4 4 2
O…(....... −0.18650 2 4 1
O........... 0.62600 4 4 2
O…^…1… 0.0 0 0 1
O…^…Cl.. 1.12600 2 0 0
O…c…1… 1.05750 2 1 1
^........... -1.31250 14 14 10
^…1....... 0.68350 10 11 9
^…Br...... 2.12800 4 1 0
^…Cl...... 1.50300 7 11 8
^…Cl..1… 1.50100 4 3 1
^…N....... 1.49900 4 4 2
^…O....... 1.00300 2 0 1
c…(....... 0.19050 12 14 9
c…(…Br.. 1.49800 6 6 6
c…(…Cl.. 1.99800 9 9 6
c…(…O… −0.25000 2 4 1
c........... −0.24800 14 14 10
c…1....... −0.87300 14 14 10
c…1…C… 0.0 0 1 1
c…1…Cl.. −1.43850 7 6 4
c…1…^… 1.99900 10 11 9
c…1…c… 0.49600 14 14 10
c…Br...... 3.50300 5 2 5
c…Br..^… 0.18550 4 1 0
c…Cl...... 3.55850 12 13 9
c…Cl..^… 2.19150 4 9 7
c…N....... −0.06750 4 4 2
c…N…^… 1.19250 4 4 2
c…O....... 1.43950 2 1 1
c…O…^… 1.87100 2 0 1
c…c…(… −0.31750 12 14 9
c…c....... 0.50200 14 14 10
c…c…1… 0.87700 14 14 10
c…c…c… 1.37200 14 13 10
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and test sets has apparent influence upon the statistical quality ofmodels
calculated with the CORAL software. The CORAL models developed here
for toxicity of the binary mixtures have mechanistic interpretations:
presence of chlorine, bromine, and oxygen is the promoter of pEC50
increase, whereas the presence of nitrogen is the promoter of pEC50
decrease.

Fig. 1. Determination coefficients of sub-training, calibration, and test sets represented
by mathematical functions of the threshold. There is the maximum of the determination
coefficient for the external test set.

Fig. 2. Determination coefficients of sub-training, calibration, and test sets represented
by functions of the number of epochs of the Monte Carlo optimization. There is the
maximum of the determination coefficient for the external test set.

Table 4
An example of the DCW(T,N) calculation.

SMILES c1ccccc1.Clc1ccc(Br)cc1.

The molecular structure

SAk CW(SAk)

Sk
c........... −0.2480
1........... −0.5000
c........... −0.2480
c........... −0.2480
c........... −0.2480
c........... −0.2480
c........... −0.2480
1........... −0.5000
^...........a −1.3125
Cl.......... 1.1875
c........... −0.2480
1........... −0.5000
c........... −0.2480
c........... −0.2480
c........... −0.2480
(........... 0.0
Br.......... 2.1250
(........... 0.0
c........... −0.2480
c........... −0.2480
1........... −0.5000

SSk
c…1....... −0.8730
c…1....... −0.8730
c…c....... 0.5020
c…c....... 0.5020
c…c....... 0.5020
c…c....... 0.5020
c…1....... −0.8730
^…1....... 0.6835
^…Cl...... 1.5030
c…Cl...... 3.5585
c…1....... −0.8730
c…1....... −0.8730
c…c....... 0.5020
c…c....... 0.5020
c…(....... 0.1905
Br..(....... 1.2530
Br..(....... 1.2530
c…(....... 0.1905
c…c....... 0.5020
c…1....... −0.8730

SSSk
c…1…c… 0.4960
c…c…1… 0.8770
c…c…c… 1.3720
c…c…c… 1.3720
c…c…c… 1.3720
c…c…1… 0.8770
c…1…^… 1.9990
Cl..^…1… −0.2510
c…Cl..^… 2.1915
Cl..c…1… 3.6270
c…1…c… 0.4960
c…c…1… 0.8770
c…c…c… 1.3720
c…c…(… −0.3175
c…(…Br.. 1.4980
(…Br..(… 1.1915
c…(…Br.. 1.4980

Table 4 (continued)

SAk CW(SAk)

SSSk
c…c…(… −0.3175
c…c…1… 0.8770

∑CW(SAk)=25.0390

a The dot in SMILES is changed by ‘^’.
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Table 5
Statistical characteristics of the model for toxicity of binary mixtures obtained in three
runs of the Monte Carlo method optimization for six random splits with preferable
threshold (T*) and the number of epochs (N*ep) which give the best statistical quality
for the test set.

Run 1 Run 2 Run 3 Average

Split Ta Na
ep R2

test
a R2

test R2
test R2

test

1 2 10 0.9302 0.9306 0.9157 0.9255±0.0069
2 3 11 0.9397 0.9254 0.9134 0.9262±0.0107
3 3 17 0.9509 0.9497 0.9504 0.9503±0.0005
4 2 11 0.9200 0.8868 0.9325 0.9131±0.0193
5 1 5 0.7489 0.8681 0.8188 0.8119±0.0489
6 1 10 0.9397 0.9350 0.9466 0.9404±0.0048

0.9112±0.0460

a R2
test is the correlation coefficient between DCW(T*,N*) and pEC50 for the test set.
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