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In many real-world applications simple classifiers are too weak td have predictive power.
Ensemble techniques, or mixture of experts, are a possible solution. We illustraté why
mixture of experts are a natural choice in domains such as the prediction of environ-
mental toxicity for chemicals, when a structural approach is pursued. The real data here
used are derived from peer reviewed experiments, and are publicly available, but are dif-
ficult to model. We used them to predict aquatic toxicity for fish. Chemical information
was coded into a set of about 160 descriptors; after reducing the dimensions of the fea-
ture vector through different techniques, we developed multivariate regression to build
a model of the toxic effects of chemicals. Defining toxicity as a category, as in European
Union (EU) regulations, we extended the study to predict toxicity class. Problems with
poor predictive power of this simple approach have led us to reconsider the problem
from a more theoretical angle. We have respected locality criterion to build different
local classifiers, one for each chemical class, to achieve better results. Then we combined
the classifiers to get a complete system to predict any chemical for the chemical classes
studied.
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1. Introduction

Research in the past decade has shown that classification and regression problem
ensembles are often much more accurate than the individual base learners that form
them.?! There are different ways to use several classifiers in a recognition problem,
at least two main streams derived from the introduction of “ensembling” highly
correct classifiers that disagree as much as possible, and “mixtures of experts”,7-1?
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built on the idea of training individual networks on a subtask, and then combining
these predictions with a gating function that depends on the input. In this paper
we shall use the term combination of experts, in order to include all the aspects of
integrating local experts.

While the combination of individual classifiers is still a matter of theoretical
discussion,'®*% sometimes the application domain itself can address specific en-
semble solutions, as shown in the following. The application domain in which our
research originated is the prediction of ecotoxicity for molecules,'? a domain rapidly
growing from chemometrics, and data mining. In traditional chemometrics and life
sciences, regression models'® are developed and evaluated and the predictive value
is assessed through statistics. For regulatory purposes classifiers are a better solu-
tion, such that ecotoxicity authorities can choose a class label rather than a real
number. The predictive assessment of such systems requires a more extensive view,
to account for specificity and sensitivity of the classifiers, besides attaining a high
confidence level.'® This domain is difficult, the main reason being the need for se-
lected, compatible data, avoiding arbitrary generalizations and the variability of
biological data that can easily influence the output.

Of the many methods of combining classifiers, we chose the supervised learning
paradigm; we clustered the data in a supervised way into different chemical classes,
defining for each partition a set of training examples labeled with an output class
tag, then we trained the individual classifiers and combined these predictions with
a “gating” function, a classifier that learns how to allocate examples to the experts.
Each expert is a model of a region of the input space, and the gating function has
to decide from which model the data point originates.

In this paper we explain how to extend classical QSAR approaches to the pre-
diction of environmental toxicity for chemical products through combinations of
classifiers, and provide results on real data.

In Sec. 2, we illustrate some specific problems of toxicity prediction. We choose
the EPA data set for toxicity on fish, and discuss its properties. We derive a large
feature space from the chemical structures; chemical information is coded into a set
of about 160 descriptors.

In Sec. 3, we illustrate the different stages of model building; having reduced the
dimensions of the feature vector via different techniques, we developed multivariate
regression to build a model of the toxic effects of chemicals. Defining toxicity as a
category, according to EU regulations, we extended the study to predict toxicity
class. Problems with the poor predictive power of this simple approach obliged us
to reconsider the problem, with a stricter definition of the QSAR. We then built
different local classifiers, one for each chemical class, that give bettér results, and
combined them all together to produce a complete system to predict any chemical
from the chemical classes studied.

In Sec. 4, we develop our combination scheme to accommodate different classifier
experts for different parts of the domain, so as in principle to take advantage of
distributed computation moving to very large data sets. We discuss the overall
results, and conclude with our final considerations, in Sec. 5.
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2. The Problem of Toxicity Prediction
2.1. Chemometrics

Chemometrics, the production and use of chemical information, is an area where
pattern recognition techniques are extensively used. Chemometrics encompasses the
basic steps of:

o Data analysis — Extracting information from chemical data.
e Experimental design — Yielding information from chemical data.
e Modeling — Investigating complicated relationships. -

The basic Chemometrics strategies evolved from statistical experimental design,
which gives the range of ways to generate a set of examples, reduce the range
of attribute dimensions and transform data to simplify the response function, by
linearizing, stabilizing the variance and making the distribution more normal.

One of the most active areas in chemometrics is QSAR, (Quantitative Structure-
Activity Relationships),'® developed in the last 40 years to assess the value of
drugs, and now proposed as a method to assess general toxicity, as well as a way
to obtain new knowledge from data. QSARs can be based either on regression'® or
classification?®: for drug activity and toxicity to a given target, most QSAR models
are regressions, mainly referring to the dose with toxic effect in 50% of the animals.
Classification systems for QSAR, or SAR (Structure-Activity Relationships) refer
to regulatory bodies (NTP, EPA, IARC, etc.), that aim to use predictive methods
for priority setting and for risk assessment. The correct modeling of QSAR. derives
from “postulates” as defined from evidence and theory, and is expressed as follows:

e The molecular structure is responsible for all the activities shown.
o Similar compounds have similar biological and physico-chemical properties.
o Congenericity: QSAR is applicable only to similar compounds.

From this definition of QSAR it is evident that the localness of the model must be
preserved, and generalization requires attention. For toxicity prediction, considering
the small amount of experimental data and the huge number of compounds, a way to
maintain localness is to employ an ontological approach and divide the compounds
into homogeneous sets. _

Besides the ontological approach that can produce different classifications of
chemicals, there is also a representation problem. Many molecular representations
have been proposed, claiming to explain the properties of the molecule better (quan-
tum similarity, spectral properties, descriptors, etc.), but no general conclusions can
be reached.

The goal of toxicity prediction is to describe the relationship between chemi-
cal properties on the one hand, and biological and toxicological processes on the
other. Scientifically, predictive (eco)toxicology is a recent area. Knowledge about
the causes of toxicity is unavailable, though there are some interesting cases, such
as logP to describe narcosis.® Thus, a large number of features (in the hundreds)
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should be tested. Classically QSAR models are (multi)linear equations; however
some nonlinear approaches have also been used.?°

In the present study we build models for predicting aquatic toxicity, both as
QSAR. models, which predict a continuous value,!® and as classification methods,
for toxic effect intervals — more directly applicable for regulation of chemicals.
We show why they implicitly require ensembling, because QSAR models are local
models. Moreover, we need to ensemble classifiers to improve the results of simple
PLS methods, that have been applied in our laboratories3! to the same data set,
obtaining R? (cross-validated with leave-one-out) lower than 70%.

2.2. Data set and molecular descriptors

The US Environmental Protection Agency (EPA) studied toxicity in the fat-
head minnow (Pimephales promelas) using a series of industrially used organic
compounds.'>32 The measure for acute toxicity is LC50 (96h), i.e. the lethal con-
centration for 50% of a population within 96 hours.

The data set we built, called IMAGETOX fm, contains 568 different compounds
for which the toxicity value was taken from EPA and a large number of fea-
tures (chemical descriptors) were calculated at the Mario Negri Institute. The data
is quite representative for most industrial chemicals, but they are still a very small
percentage of the commercialized chemicals, and an even minor part of all pos-
sible chemicals humans can be exposed to. Nevertheless, they represent a unique
collection of data, because experiments have been conducted according to a well-
defined protocol, many observations have been collected to produce the information
expressed as LG50, and many years of work and resources have been dedicated to
this task. As typical in data from studies in the life sciences, the cost of experimental
data is high. Thus, the number of experiments is quite low, as in other cases of life
sciences in which classification methods have been used.! What is more convenient
in our case is to produce many calculated values for the used chemicals, which are
chemical descriptors.

To compute the descriptors, preliminary molecular modeling was done using
HyperChem 5.0 (Hypercube Inc., Gainsville, Florida, USA) to generate 3D repre-
‘sentations. These were then refined with the PM3 Hamiltonian, a semi-empirical
method for energy minimization of the geometry. Accurate 3D representations of
structures were necessary to generate descriptors dependent on geometry.

Most of the descriptors were calculated by CODESSA 2.2.1 (SemiChem Inc.,
Shawnee, Kansas, USA). Quantum-chemical descriptors, i.e.- total energy of the
molecule, HOMO and LUMO energies, ionization potentials, heat of formation,
etc., were calculated using MOPAC (with the PM3 Hamiltonian). A class of des-
criptors largely used for QSAR studies along with the apparent partition coeffi-
cient (logD), was calculated by Pallas 2.1 (CompuDrug, Budapest, Hungary). These
physico-chemical descriptors are the expression of lipophilicity of the molecule at
various pH. We selected pH values of 3, 5, 6.5, 7, 7.4 and 9.
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Table 1. Statistical information about the
data set (toxicity value LC50 in mg/liter).

Parameter Value
Maximum 75200.00
Minimum 0.00019
Geometrical mean 24.1313
Arithmetic average 1.0600e+-003

Table 2. EU classification for fish (directive 92/32/EEC annex VI

point 5.1).

Class LC50 96h Damage to the Environment
I <1mg/L Very toxic to aquatic organisms
IT 1-10 mg/L Toxic to aquatic organisms
IIT 10-100 mg/L Harmful to aquatic organisms
v > 100 mg/L May cause long-term adverse

effects in the aquatic environment

After removing descriptors with missing and constant values, the entire data
set consist of 156 descriptors. They can be split into six categories: constitu-
tional descriptors (38), geometrical descriptors (12), topological descriptors (36),
electrostatic descriptors (57), quantum-chemical descriptors (6), physico-chemical
descriptors (7).

We used log (1/LC50) to predict continuous values of acute toxicity. Because
these values were widely spread (see Table 1) and to take account of regulations, the
results were also transformed into the classification for toxicity to fish provided by
Directive 92/32/EEC of the EU for dangerous substances (Table 2). For a discussion
on toxicity classes for this data set, see Ref. 25.

The apparently simple classification of the output may hide the real scientific
problem. Toxicity is a very complex phenomenon, involving many different and com-
peting biochemical processes, which take place in different parts of the organism.
Death, which is the endpoint considered in the data set, can be due to different
causes. Also the chemical compound producing the toxic effect actually interacts
with many biomolecules, and often undergoes metabolism, which generates new
chemicals.

2.3. Combination strategies

Classifier combination strategies may reflect the local competence of individual
experts as used in the mixture of experts paradigm. Beside simple averaging,? the
output classifier can be trained separately using the outputs of the input classifiers
as new features, as proposed by Ref. 24 developed in Ref. 27 and already applied
to a similar problem in Ref. 5.
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A strong point that makes combinations of classifiers attractive in QSAR, be-
sides improved results, is the fact that they can be distributed both in time and
space. Partitions of the data are distributed to different processors, each applies
a learning algorithm to each subset, and then the learned results yield a single
classifier.” The reduction in execution time results from the distribution of the
expensive learning step to multiple processors, a research area we are currently
actively pursuing.

In this paper, we focused on classifier combinations in this scenario. After
studying the data set, and trying a simple classifier, we divided the problem domain
into subsets (the chemical classes) and worked on them separately. We developed
a set of disjointed simple classifiers, and combined them by selection of the most
appropriate classifier.

3. Experiments and Results
3.1. One monolithic system

We used the WEKA data-mining workbench3* created by the Department of Com-
puter Science at the University of Waikato, New Zealand, for modeling. Tt comprises
a wide range of data mining algorithms for regression, classification and cluster-
ing, as well as tools for preprocessing, evaluation and visualization of the data
and results.

Initially we constructed a single linear model to predict the toxicity value, using
all descriptors and the entire data set of 568 chemical compounds. We applied
linear regression with a ten-fold cross validation (cv) in all our tests. This validation
approach was discussed in related cases by Ambroise and McLachlan.! Results are
listed in Table 3 and illustrated in Fig. 1, which summarizes the values obtained
with the ten-fold cv models. Both the low R2-value and the comparatively high
error measures indicate that the model does not predict toxicity with satisfactory
accuracy. This is mirrored again in the dispersion diagram (Fig. 1) with its wide
spread. After regression the transformed results in classes of toxicity are not good
(Table 4). The same poor results have been obtained using discriminant analysis.
With so many variables there are often several that do not contribute to the final
result, thereby reducing the prediction accuracy of a model. Furthermore with an
increasing number of influencing factors the result becomes difficult to analyze and
interpret and the risk of an overfitted model arises.3”

Table 3. Accuracy of prediction of log (1/LC50) using a single model with all

descriptors.

Model Descriptors Evaluation Parameter Value
Linear regression 156 CORR 0.740
Ten-fold cross validation R2 0.548

MAE (Mean Absolute Error)  0.643
MSE (Mean Squared Error)  0.956




Multiclass Classifier from a Combination of Local Ezperts 807

7
»*
6 -
L4
»
5- »
. .
.
*
4 L
o
* -,
. v . .
-
. 31 . Th s
-]
(] v v
E 'Y 0‘:_,."‘ ‘f:”o.. » . .
o - y »
g 2 W
> . . e sl % . .
- ” . L)
g . e f’c LI
6 1 QW% e ™
- DS WL - ."':'l“;','&. o
L] A P
£ . o TN .
& g4 a7, A, A s -
hg 3
. f:ﬁf! LAk T AN
Yo & ety 23 s b
Pl ¥ »
1 A& 4
- . o .t'
* *, -
‘o. ) s . *
2 AR
- 1 -
. .
-3 4 .
-4 T T T T T T T T T T

experimental values

Fig. 1. Prediction dispersion of a single model with all descriptors; toxicity value is log(1/LC50).

Table 4. Accuracy of classification-from-regression into four toxicity
classes using a single model and all descriptors.

Number of Compounds  Percentage

Instances classified correctly 345 60.74%
Instances classified incorrectly 223 39.26%
Total 568

Therefore, we decided to reduce the number of descriptors to obtain a more
robust and accurate model. We used different selection algorithms of WEKA for the
reduction,?® i.e. the CFS-algorithm,'* based on the correlation between attributes
and the goal to be predicted, the ReliefF-algorithm?® that addresses the discrim-
ination ability of an attribute and the wrapper-routine,?? which uses results of a
learning method to select attributes. The latter gave the best result, selecting 20 of
the descriptors distributed in all categories. Again, linear regression was performed.

The evaluation parameters were better than those obtained without reduction
of the descriptors (Table 5) and the dispersion diagram shows that the points are
closer to the ideal prediction (Fig. 2), even though an anisotropy with respect to the
diagonal appears. However after transformation into classes of toxicity, the accuracy
was still poor (see Table 6).




808 (. Koénig et al.

7
1
6 4
. .
5
. -
4 .
.
- .
0.‘D b
.
34 . 0
8 ..¢‘, t.'
ot .
] kg .
T 2 PO T A
g 24 . A0
et es
T LIRS T,
o g P
B 14 LI N
= . S C 4 0 .
= *% SR AR
® BUC ¢ LR
- P
2 . .
o Ay -
01 L 2 .
e Fadire s e o,
. et s oe
".:- 3 -
A 1 LA,
.
*e
" %NS, .
-2 .
-3 4
4 T T T T T T T T T T

experimental values

Fig. 2. Prediction dispersion of a single model with wrapper selection; toxicity value is
log(1/LC50).
Table 5. Accuracy of the prediction of log (1/LC50) of a single linear
regression model with wrapper selection.
Model Descriptors ~ Evaluation Parameter Value
Linear regression 20 CORR 0.838
Ten-fold cross validation R2 0.701
MAE 0.565
MSE 0.571

Table 6. Accuracy of classification into toxicity classes of a single linear
regression model with wrapper selection.

Number of Compounds  Percentage
Instances classified correctly 337 59.3 %
Instances classified incorrectly 231 40.7 %
Total 568

3.2. Models of chemical classes

The data set contains a lot of completely different compounds, which are toxic in
some way but structurally diverse. It is likely that no single model is able to yield
good results for them all. Dividing the set into smaller groups is one way of dealing




Table 7. Subsets of chemical classes.
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Chemical Classes in the Subset

EPA Classification Code

Number of Compounds

Hydrocarbons 2.0, 2.1 26
Ethers 3.0, 3.1, 3.3 24
Alcohols 4.0, 4.1, 4.2, 4.3 60
Aldehydes 5.0 44
Ketones 6.0, 6.1, 6.2 39
Acids 7.0, 8.0, 8.1, 8.2, 8.3 68
Nitriles, Sulfur Compounds 9.0, 12.1, 12.2, 12.3 33
Amines 10.0, 10.1, 10.2, 10.3, 10.4, 10.5 74
Benzenes 13.0, 13.1 33
Phenols 14.0, 14.1 49
Heterocyclics 15.0, 15.2, 15.3, 15.4, 15.5, 15.6 48
Carbamates, other pesticides 21.0, 22.0 28
Various classes (pasted) 1.0, 1.1, 11.1, 16.0, 17.0, 18.0, 42

19.0, 20.0, 23.0, 23.1, 24.0

Table 8. Linear regression results for 13 subsets of chemical classes.

Number R2 Mean Absolute Mean Squared

Subset of Descriptors Error (MAE) Error (MSE)
Hydrocarbons 6 0.805 0.309 0.201
Ethers 12 0.986 0.130 0.031
Alcohols 7 0.721 0.551 0.555
Aldehydes 9 0.609 0.385 0.241
Ketones 2 0.734 0.476 0.497
Acids 10 -0.840 0.342 0.183
Nitriles, Sulfur Compounds 4 0.812 0.364 0.281
Amines 16 0.932 0.255 0.105
Benzenes 5 0.820 0.310 0.161
Phenols 6 0.798 - 0.329 0.189
Heterocyclics 7 0.757 0.469 0.395
Carbamates, other pesticides 4 0.785 0.643 0.627
Various classes 3 0.732 0.562 0.509
‘Weighted mean 0.395 0.302

(weighted by numbers of compounds)

with this diversity. Therefore we split the data set into 13 groups according to the
EPA’s chemical classification. Such groups contained between 24 and 74 compounds
(Table 7). All groups apart from one contain only one or two chemical classes and
a number of subclasses to keep the similarity of the compounds within a set. There
remained a few classes with a very small number of compounds (fewer than ten).
A model built up on such a small base is not reasonable, so these classes were
merged. For each subset the number of descriptors was reduced using the wrapper
method as already applied to the complete data set. Then a linear regression was
performed on each set to achieve 13 models, each able to predict the toxicity of
the corresponding data set. The ten-fold cross-validation results are summarized
in Table 8. The results vary widely with the subset. Some models predicted the
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toxicity values very well of the area of chemical compounds: these are the models
for ethers and amines, the latter being the largest group. Other models gave less
satisfactory results. The subset of aldehydes gave the worst results. But most models
had lower errors with respect to the single model obtained previously. Even though
the average selected descriptors were lower than for the single model, the models
were able to predict the toxicity with greater accuracy. Thus a combination of these
experts improved the result for the entire set.

3.3. Combination of the chemical class models

As mentioned in Sec. 2.3, the most common methods for combining results are
averaging (with or without weighting) or voting; another method that uses the
output of a learning algorithm as input is “stacking”.2® But all these combinations
are “ensemble” methods, which means that they combine outputs redundantly. In
our case such linear combinations are not very useful because we would lose the local
influence of our experts, built and adapted on strictly separate areas of the data
space. This modularity implies that in further studies we can improve these experts
and easily exchange or supplement them.

To maintain this advantage we decided to use a competitive strategy, thus
selecting the appropriate expert for each instance. This selection benefits from the
fact that we used the chemical classification to separate the data space. The classifi-
cation strongly depends on the structure of a chemical compound, i.e. the existence
of specific atoms or functional groups within a molecule. The structure is expressed
mainly by constitutional descriptors (see 2.2) that already exist in the data set.
Since the other descriptors in the set depend on the constitutional ones as well,
they can also improve this classification. :

This is an original approach, because the classifiers are used not to predict toxi-
city classes, but to identify the most fruitful models, on the basis of the automatic
selection of chemical classes. Chemical classes can be defined by human experts, and
on the same data set we used separate local models obtained by splitting the data
set into in chemical classes.3! Another study? used discriminant analysis in order
to classify toxic mechanisms of action of phenols, which are a subset of our data
“set. The novelty of the present approach is that we need neither human knowledge
for the selection of chemical classes nor experimental data on the toxic mode of
action. The classification done by human experts can be difficult because quite
frequently more than one functional group is present in the same structure. In this
case, the same chemical can belong to more than one chemical class. Our approach
is directed to an automatic classification of chemicals into nominal classes, using
chemical descriptors. Then, specific toxicity models can be used, based on these
nominal classification. :

In order to develop the classifier, we trained different algorithms included in
WEKA. The best results were obtained by applying a meta classifier scheme that
was able to handle multiclass data sets with two-class classifiers. It was applied to
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Table 9. Accuracy (ten-fold cross-validated) of classifying compounds
in 13 chemical subsets.

Number of Compounds  Percentage

Instances classified correctly 485 85.4%
Instances classified incorrectly 83 14.6%
Total 568

Table 10. Accuracy of prediction of log (1/LC50) of the combined model.

Model Descriptors Evaluation Parameter Value

Linear regression 20 CORR 0.896
Ten-fold cross validation R? 0.802
MAE 0.417

MSE 0.390

Table 11. = Accuracy of classification into toxicity classes of the combined model.

Number of Compounds Percentage
Instances classified correctly 409 72.0%
Instances classified incorrectly 159 28.0%
Total 568

the J48-algorithm, which implements the C4.5 algorithm of Quinlan,?® using the
error correction code to improve the accuracy. The results are listed in Table 9.
Differentiating between all subsets showed that there were just three of 13 subsets
that presented low accuracy for the classification into chemical classes, one being
the mixed subset with chemical classes of less than 10 compounds. The remain-
ing subsets were predicted very well, most with accuracy above 90%. With these
limitations, the classifier was able to discriminate between the subsets.

The output of this classifier was then used to select the appropriate toxicity
model for each compound in the data set. After combining the different sub-models,
the results improved considerably. R? typically increased an order of magnitude
and the error values fell by nearly 30% compared with the best result of one
single linear model as used before (Table 10 as opposed to Tables 3 and 5). This
time the classification in toxicity classes was also better. About 12% more instances
were classified correctly, which amounts to more than 70 chemical compounds out
of 568 (see Table 11).

3.4. Prediction of an external set

We compared the results obtained by ten-fold cross-validation by predicting new,
unseen data. Thus we split the data set in the ratio of 80:20 into a training set
(456 cases) and a test set (112 cases), according to the distribution in chemical and
toxicological classes, respected even for the smallest sets.
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Fig. 3. Prediction dispersion of a combined model of 13 chemical classes; toxicity value is
log(1/LC50). i

We constructed the appropriate models for chemical classification and for toxi-
city prediction, using 456 cases, and we used these models to predict the toxicity of
the other 112 cases. The best result for chemical classification (compare Table 9)
had a prediction accuracy of about 88.4% correctly classified instances on the test
set and nearly 99.1% on the training set.

Following combination with the predictions of the sub-models, the training/test
results for regression and classification into toxicity classes were a little inferior than
the cross-validated results. We obtained & value for R? for the combined model of
0.745 compared to 0.509 with a linear regression using all descriptors and 0.630

_with a selected set of attributes (compare 3.1). The classification results in toxicity
classes, at first sight, do not follow the same trend. For single linear regression
with all attributes we achieved 66.1% correctly classified instances (74 out of 112).
Reduction of the number of descriptors improved this to 70.6% (79 instances), but
the combined model “classified” 69.6% of the instances (78) correctly. At point 2.1,
we noted that it is important not to look merely at the overall classification accuracy
into chemical classes but also to scrutinize where the misclassified instances are.
Indeed it is more dangerous to classify a highly toxic compound as less toxic, than
the other way round. In that sense, despite the slight deterioration overall there
were less instances of molecules classified as less toxic than originally detected. The
same can be said for the ten-fold cross-validation results. These results confirm that
this approach gives good results in the complex field of toxicity prediction.
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The classifier of chemical classes, with correct prediction of about 85%, lessens
the final combination result. To verify that the approach takes advantage of the
good results within the sub-models, we calculated a weighted mean of the errors of
each sub-model weighted by the number of instances occurring in each subset, as
shown in Table 8. Comparison with Table 10 shows that the combination attains
levels very close to the weighted mean of the errors.

The classification of compounds into chemical classes is ambiguous. Often there
is more than one functional group in a molecule so it can potentially be classified
into two or more chemical classes. This is a general problem and does not apply
specifically to our study. Thus for some incorrectly classified compounds the selected
model is almost able to predict the correct way, but for others the prediction is
false, so the results deteriorate. In our case it is difficult to estimate the influence of
this, but spot checks showed that in most cases a bad choice of chemical classifier
worsened the final result. One way to improve the outcome of the selection could
be to use more constitutional descriptors in the set, considering that the cost and
time needed to calculate them is relatively low.

4. Discussion

The prediction of toxicity using advanced models is a topic that merits attention
for the possible advantages offered by these models, compared to laboratory experi-
mental methods. However, the issue of prediction is complex. The target of these
models, the definition of the inputs, the software to be used and how to assess the
results are all matters for discussion by the regulatory bodies. For this reason, it
is useful for them to have studies at hand comparing different approaches. Specific
problems for ecotoxicity are:

(1) incomplete knowledge of the toxicity,
(2) large variable quality of the experimental data,
(3) limited number of experimental data.

Chemical representation is also questionable, since many thousands of chemical
descriptors can be used, but a lot of them are highly redundant and have no clear
a priori relationship with the toxic phenomenon under study.

The two main criteria to obtain the sub-models are:

¢ to split the compounds according to their chemical classification (as 'we propose
here);
* to split the compounds according to their toxic mode of action (MOA).

In a study on toxicity prediction in the fathead minnow, Russom et al.3? encoded
human expert knowledge in the definition of MOA (Mode Of Action). They clas-
sified eight mechanisms involved in aquatic toxicity. They consequently identified
specific chemical fragments and developed a heuristic to find the MOA on the basis
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of these fragments. Finally, they produced simple QSAR models to predict toxicity
for specific MOA.

Indeed, several definitions of MOA have been proposed. Also about narcosis,
a simple MOA, different opinions exist. Moreover, MOA should be considered as
a continuum. For these problems, and for the a posteriori empirical definition of
MOA, many studies have instead addressed models on specific chemical classes,
instead than MOA.

There are problems basically related to the possibility that a chemical can belong
t0 more than one chemical class, and when organizing the sub-models with a unique
architecture. Our approach relies on an automatic system to define the chemical
classes and then combines specific models to predict toxicity. Our integrated system
compares well with previous methods requiring greater human knowledge.

Of course our approach is far from complete, but it has the advantage of being
modular, which makes it more flexible than other holistic approaches. Some pa-
pers have reported similar results with holistic models for toxicity classes®® and
another approach used probabilistic neural networks.?? Holistic approaches have
the advantage of simplicity, but in order to make progress they require a com-
plete rebuilding of the model. The combination of local experts presented here has
the advantage that

(1) the reliability of the models for different chemical classes is more clearly recog-
nized and defined, and
(2) it offers a simple opportunity to study the weaker sub-models.

Using a flexible architecture, sub-models can be easily modified, introducing better
models, or even integrated with new, independent sub-models.

5. Conclusion

We are increasingly aware of the need to understand and predict the consequences
of chemicals on human health and the environment.'? This is now studied through
ad hoc experiments, which are very expensive, may take years and involve animals.
The huge number of compounds makes this especially challenging: there are more
than 23 million listed in the Chemical Abstract Service. However, data on toxicity
is available only for 10% of industrially produced chemicals. Moreover, the increas-
ingly widespread use of the newly introduced Combinatorial Chemistry by chemical
companies will increase this number by an order of magnitude.

At the moment we can address the scientific and economic importance of the
predictive models developed to date by considering two main areas: combinatorial
chemistry, the process of building new compounds and ecotoxicology, the process
of regulating their use. Combinatorial chemistry works through economy of scale:
libraries of thousands of compounds are built up and screened in quantities of a
few atoms. Libraries can be designed to be targeted, i.e. compiled from compounds
that are likely to be relevant to the target compound, or diverse, to maximize the
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discovery potential. Researchers use QSAR analysis in order to choose compounds
that are likely to have the required characteristics. For ecotoxicology the primary
concern, even before that of cost reduction, is the reduction of animal experiments.

In the present study we compared methods to predict toxic effects both as a
number and as a class label. From a general point of view QSAR prefers methods
that compute a continuous value; however, this value must be evaluated considering
that the experimental data used for training (from animal experiments) may present
high variability, because of animal variability and experimental procedure. This is
the first reason for considering methods that provide categorical values. The second
is that the classification can help for a first screening of toxic properties of chemicals,
on the basis of regulatory schemes that classify chemicals.

We developed a method to automatically split a wide and heterogeneous data,
set of pollutants into chemical classes according to chemical descriptors. Then we
developed local models for the so-defined chemical classes and we combined the
local models into a classifier. We also discussed the advantages of flexible modular
classifiers; one reason being to keep as simple as possible any improvement in one
of the classifiers in case new experimental data become available, another being the
reuse of good models in new classifiers.
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