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Abstract— In this paper we introduce the problem of predicting
the mutagenic toxicity property of chemical compounds and we
discuss how this can be partially formulated as a computational
intelligence problem. Then we develop a statistical model based
on a selected set of descriptors of the molecular structure. The
classifier, that we derived from SVM methods, outperforms the
available methods in performance and simplicity.

I. INTRODUCTION

In our everyday life we have to deal with an always
increasing number of new and different chemical compounds
as food colourings and preservatives, drugs, paints for clothes
and ordinary objects, pesticides and many others. At present
the number of registered chemicals is about 28 millions. It’s
well recognised that an uncontrolled chemicals proliferation
may pose high risk to environment and people, hence their
toxic activity has to be assessed.

Biological active chemicals interact with biomolecules trig-
gering specific mechanisms, like the activation of an enzyme
cascade or the opening of an ion channel, which lead to a
biological response. These mechanisms, determined by the
chemical composition, are unfortunately largely unknown, thus
toxicity tests are needed. Alongside classical methods as ”in
vivo” and ”in vitro” experiments, the use of computational
tools is gaining more and more interest in the scientific
community and the industrial world as accompaniment or
replacement of existing techniques.

In fact, while real tests are clearly expensive and time
consuming, with the actual computational capacity “in sil-
ico” models are broadening the horizons of experimental
sciences: we are more and more moving from experiments
to simulations. In computational chemistry we are able to
represent molecules according to different views, from the
basic valence model to graph representation, from electronic
clouds to 3D structure. Algorithms are available to compute
molecular descriptors, ranging from simple properties to com-
plex fingerprints, that can help transforming the study of
interactions between molecules and living organisms in a kind
of data mining problem, finding relevant correlations with the
response of interest.

For regulatory purposes it is important to obtain satisfactory
classification accuracy on new chemical families not well

studied and developed. In this area models are needed that
can take advantage of statistical analysis on great numbers and
can be further refined using cooperative methods (for instance
local models of given classes) to improve or confirm the results
and give more insights into the domain. Moreover, to achieve
a really predictive models it is important also to assess the
predictive power of our relations.

This paper surveys the mutagenic toxicity prediction issue
from the Quantitative Structure-Activity Relationships per-
spective. In particular a support vector machines machine
learning method is presented and a model for the mutagenic
property prediction is developed and validated by data mining
from a set of calculated molecular descriptors.

We conclude our experiment with an open source release of
the final model that is available from the authors and in the
next future on the site of the CAESAR project1.

II. THE MUTAGENIC PROPERTY

Mutagenic toxicity is the capacity of a substance to cause
genetic mutations. This property is of high public concern
because it has a close relationship with carcinogenicity and
eventually reproductive toxicity [5]: most of the mutagenic
substances are suspected carcinogenic substance in case a
genotoxic mechanism is considered.

A particular group of chemical substances, called xenobi-
otics, binds DNA molecules whether inducing cellular death
or promoting a complex series of events that may finally
induce cancer. Most of the lesions chemically induced to DNA
are repaired, but the missed ones may cause a mutation, i.e.
the introduction of an altered gene which will be inherited
by the new cellular generation. However, cancer induction
is a process depending on several factors, since even non-
genotoxic substances may facilitate the pathology by some
mechanisms different from the DNA damage.

Today regulators request the availability of mutagenicity po-
tency, to correctly label and restrict mutagens/carcinogens and
the human exposure to them. For example in drug/pesticide
discovery mutagens should be stopped as early as possible,
even before they are synthesized. Models are needed to

1CAESAR project home page at http://www.caesar-project.eu/
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identify mutagens/carcinogens, and to keep into account their
potency.

In experiments, mutagenic toxicity can be assessed by
various test systems. One crucial point was the creation of
cheap and short-term alternatives to the rodent bioassay, the
main tool of the research on chemical carcinogens. With this
intent Bruce Ames created a series of genetically engineered
Salmonella typhimurium bacterial strains, each strain being
sensitive to a specific class of chemical carcinogens [2]. The
Ames test is an in vitro model of chemical mutagenicity and
carcinogenicity, and consists of a range of bacterial strains
that together are sensitive to a large array of DNA-damaging
agents [3] [4]. An interesting point is the reliability of such
experimental tests: as discussed in [22] the estimated inter-
laboratory reproducibility rate of Salmonella test data is 85%.
This observation will be taken into account in our model.

III. PREDICTING PROPERTIES WITH QSARS

In this paper we focus on QSAR (Quantitative Structure-
Activity Relationship), that branch of predictive toxicity look-
ing for correlations between the properties of the chemical
structure and a measure of its activity/toxicity in a specific
area, such as mutagenicity, carcinogenicity or skin sensitisa-
tion, that is called ”endpoint of interest”. Modelling is based
on the construction of predictive models using a set of known
molecules and the associated activity values. Such models can
be generated using a wide variety of statistical methods, and
more recently using machine learning methods (rule induction,
neural networks, etc.).

In early QSAR studies, only few physicochemical properties
were proposed to be responsible for the biological potency, as
steric (size and shape of the chemical), electronic (related to
the ability of the chemical to undergo reactions) and hydropho-
bic (related to transfer across cell membranes) ones. The
attempts to quantitatively relate these chemical parameters to
the observed effects were restricted to very closely correlated
compounds, differing in only one part (substituent) of the
molecule [16].

In modern QSAR a wide set of theoretical molecular
descriptors is used, consisting of different kinds to take into
account the various features of the chemical. Their computa-
tion can be carried out by many software packages (mainly
commercial) starting from the structural representation, even
for that chemicals not yet synthetised.

The first step in making a QSAR model is the calculation of
molecular descriptors, which fall into three main classes. In
the first class we have geometric descriptors, characterising
the 3-dimensional structure of the molecule as geometric
moments, molecular surface areas and volumes. The next
class of descriptors are called topological descriptors since
they represent the molecule as a mathematical graph encod-
ing various features (such as connectivity and path lengths);
they extract information regarding the shape of a molecule
independently of the specific geometry. The third class of
descriptors are the electronic descriptors and represent the

electronic features of a molecule such as HOMO and LUMO
energies, electronegativity, and hardness.

Another type of numerical values are the so called finger-
prints. Fingerprints are used to encode structural characteris-
tics of a chemical compound into a fixed bit vector; they are
typically generated by enumerating all cycles and linear paths
up to a given number of bonds and hashing each of these cycles
and paths into a fixed bitstring of ’1’ and ’0’. The specific
bit-string encode a very large number of sub-structures into a
compact representation [19]

The underlying idea of QSAR models is that chemicals with
similar values for the considered descriptors must behave in
a similar way; thus, once the model is built, it can be used
as a forecasting tool in drug design, environment protection
and hazard analysis for all those compounds whose structure
is similar to the structure of the ones used to tune the model.

To asses the predictive ability of the model different vali-
dation methods are available, as k-folds cross validation and
external test set. However, even though a model may exhibit
good predictive ability during validation and testing, it is not
always guaranteed that the it will perform well on a new set
of data. The main reason is that the number of chemicals and
chemical classes is really big (about 28 millions of chemicals
substances are so far registered in the CAS register), while
the number of biological assays used for training is relatively
small (in the order of hundreds).

In this context, it must be mentioned that one of the major
problems in QSAR modelling is the availability of high quality
experimental data for building the models. The input data must
be both accurate and precise in order to develop a meaningful
model, because its statistical validness depends on the one of
the data that have led to its development. In addition there is
the problem of descriptors reproducibility: experimental values
can differ greatly even when referred to the same compound2.

QSAR has been applied to mutagenicity prediction. One
of the first attempts [16] used only four descriptors, namely:
one obtained from quantum computing (LUMO); the partition
coefficient between octanol and water (LogP, it’s a measure of
the potency of the molecule to cross the cellular membrane);
a structural indicator; a descriptor able to exclude molecules
considered outliers. This paper used only 230 compounds,
mutagenic or not, of the same chemical class. One of the
problem of this model was the use of a quantum computation
descriptor, that takes a long process to be obtained, and the
limitation to a single chemical class. The same data set has
been used with Inductive Logic Programming [25].

Early computational models based on the expert system
paradigm have been developed for mutagenicity and other
endpoints [15]. Some of them had been incorporated into
commercial programs [23], [18], [13]. For a recent evaluation
of their performances see [24]).

A new era in modelling mutagenicity arrived with the
availability of large data set of non congeneric compounds.

2An example is given by the partition coefficient (LogP): in the several
approaches to its computation it is not uncommon to get differences of orders
of magnitude.
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The most notable has been provided and analysed by Kazius et
al. [17], and includes more than four thousand molecules with
the respective Ames test binary result. A drawback of those
data is that molecules tested with different methods (with and
without metabolic trial) are mixed; however, it is accepted in
the scientific community as a sound dataset. On this core data
a few other papers have been published [20], [28] that we used
to benchmark the results of our model.

IV. SUPPORT VECTOR MACHINES FOR CLASSIFICATION

Support Vector Machines (SVM) are a collection of super-
vised learning methods for classification and regression [12]
[8]. Their elegance combined to their potency make of SVM
a bright tool with well-founded basis in statistical learning
theory, already successfully used in many application domains,
including QSAR [20] [7]. Let’s overlook the key idea behind
SVM classifiers.

Given a training set of d-dimensional data points, where
each of them is known to belong to one of c classes, the aim
of a supervised classifier is to predict which class new data
points will be in. Focusing for clarity on binary classification,
if it is assumed (but just for the moment) that data points of
the two classes are linearly separable, a smart model is given
by a (d-1)-dimensional hyperplane that correctly separates
instances of different classes3. Generally there are infinite
possible separator hyperplanes. The one that better generalises
the problem is the “furthest” from samples of both classes:
small variation in the data would not introduce big variation in
the model. This paradigm is put into practice by the maximum
margin hyperplane, where “margin” is the sum of the two
distances from the hyperplane to the closest samples set of
both classes. These points are called support vectors and are
the training patterns closer to the decision boundary.

In the following we review the C-Support Vector Classifica-
tion (C-SVC) algorithm, a linear method originally proposed
by Vapnik [27] and later extended for nonlinear classification
at AT&T Bell Labs [6].

Consider the set of l training vector-label pairs {xi, yi},
i = 1, . . . , l, x ∈ Rd and y ∈ {−1, +1}. Given any separator
hyperplane w · x − b = 0, where w is a normal vector, its
parallel hyperplanes lying on the support vectors of the two
classes can be written (just fixing a scale) as w · x − b = 1
and w · x − b = −1. So the margin can be computed as the
distance between these two hyperplanes (see Figure 1).

Being such distance d = 2
‖w‖ , maximising the margin

means minimising ‖ w ‖, and after a convenience substitution
with ‖w‖2

2 the maximum margin hyperplane problem can be

3It’s clear that such concept can be easily extended to handle the multiclass
case with c classes by considering the respective c hyperplanes that separate
instances of each class from all the others [6]. Anyway, since the mutagenicity
prediction is a binary problem, in the following we consider the case of two
classes, labelled for convenience +1 and -1.

Fig. 1. The maximum margin hyperplane.

presented as a Quadratic Programming optimisation problem:

min
w,b

1
2
‖ w ‖2

subject to

{
w · xi − b ≥ +1 ∀i : yi = +1
w · xi − b ≤ −1 ∀i : yi = −1

, i = 1, . . . , l

or more concisely:

min
w,b

1
2
‖ w ‖2

subject to yi (w · xi − b) ≥ 1 , i = 1, . . . , l

To extend to the linearly inseparable case we have to relax
some constraints introducing a slack variable zi measuring
the error of the instance xi, and then trying to simultaneously
maximise margin while minimising the error:

min
w,b

1
2
‖ w ‖2 +C

∑

i

zi

subject to

{
yi (w · xi − b) ≥ 1− zi

zi ≥ 0
i=1,. . . ,l

where C is the cost parameter, the only to be chosen by
the user (larger is C and higher is the penalty assigned to
errors). With this soft margin extension, proposed by Cortes
and Vapnik [10], it’s possible to simultaneously try to fit and
generalise the training data by a linear model.

To get a nonlinear classification, the input training vectors
are mapped into a higher dimensional space by a nonlinear
function Φ(x), and a linear model in the new space can
implement nonlinear boundaries in the original space [1].

min
w,b,zi

1
2
‖ w ‖2 +C

∑

i

zi

subject to

{
yi (w · Φ(xi)− b) ≥ 1− zi

zi ≥ 0
i=1,. . . ,l
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Obviously the computational load grows exponentially, but
SVM get around this trouble elegantly, performing the map-
ping with kernel functions. First of all it is necessary to switch
to the Wolfe dual [14] of the Lagrangian formulation of the
QP problem just presented (see Cortes and Vapnik [10] for
derivation):

max
Λ

∑

i

λi − 1
2

∑

i,j

λiλjyiyjΦ(xi) · Φ(xj)

subject to





∑

i

λiyi = 0

0 ≤ λi ≤ C
i,j=1,. . . ,l

where the new variable Λ = λ1, . . . , λl is the vector of
Lagrange multipliers. The same problem can be solved either
in the primal or the dual form. Notice that in the dual form
the mapped data only occurs as a dot product: by Mercer’s
theorem [11] [26], given K(xi,xj), a continuous, symmetric,
positive semi-definite kernel function, it does exist a function
Φ(x):

K(xi,xj) = Φ(xi) · Φ(xj) ∀i, j
It means that the dot product in some high dimensional
space can be evaluated by a kernel function in the original
space, even without knowing the mapping Φ. It’s simple as
it appears: just substitute every occurrence of Φ(xi) · Φ(xj)
with the kernel function K(xi,xj), and the mapping is never
computed.

Thereby, the final formulation of the problem in its dual
form is:

max
Λ

∑

i

λi − 1
2

∑

i,j

λiλjyiyjK(xi,xj)

subject to





∑

i

λiyi = 0

0 ≤ λi ≤ C
i,j=1,. . . ,l

This is a convex quadratic optimisation problem, so every local
solution is also global [14].

Common kernel functions are:
• linear: K(xi,xj) = xi · xj

• polynomial: K(xi,xj) = (γ xi · xj+r)d, γ > 0
• RBF (Radial Basis Function): K(xi,xj) =

exp
(−γ ‖ xi − xj ‖2

)
, γ > 0

• sigmoid: K(xi,xj) = tanh (γxi · xj + r)
where γ, r and d are kernel parameter. With an RBF kernel
a support vector machine is a kind of neural network called
RBF network.

V. BUILDING AN SVM-BASED CLASSIFIER FOR
MUTAGENICITY:

An environment to develop SVM models is provided by the
open source LibSVM [9] library4, containing C++ and Java
implementation of SVM algorithms with high-level interfaces
(Python, Weka and more). Within this environment we built a

4Software available at http://www.csie.ntu.edu.tw/˜cjlin/libsvm

model for the mutagenicity classification using the RBF kernel
(after the results of previous experiment on the same chemical
set [20]).

The optimal parameterisation of the model has been auto-
mated by a script included in the library, that performs an
almost exhaustive grid-search in the 2-dimensional parameter
space of the objective function using as evaluation criterion a
cross-validation on the training set.

A. The data set

Our mutagenicity model uses a large set of 4225 chemical
structures, meticulously assembled after an individual check
within the CAESAR project from the data set described in
[17]. The check removed from the original data set a few
molecules with errors or lack of clear information.

The data set was split into a training set (80%) and a test
set (20%).

For each compounds a complete set of few hundreds mole-
cular descriptors were calculated with MDL-QSAR software
[21] [19]. The descriptors include basic chemical properties of
the whole molecules (as log P and number of rings)and small
fragment counts.

For modelling we had to reduce the descriptors number. The
subset of descriptors has been automatically selected with the
BestFirst search method, using as subset evaluator the 5-folds
cross-validation score on the training set. In short, BestFirst
algorithm searches the space of attribute subsets by greedy
hill climbing (considering all possible single attribute additions
or/and deletions at a given point), with a backtracking facility
to explore also non-improving nodes. The same subset of
27 descriptors has been obtained either searching forward
starting from the empty set, and with a bi-directional search
starting from the 10 top rated attributes by a single attribute
evaluator (Relief), both with 3 steps of backtracking. The
selected descriptors are in Table I. The resulting dataset has
been normalised by dividing each descriptor column by its
maximum absolute value.

Let us discuss about the meaning of the descriptors. About
global topological descriptors.
• Gmin is the minimum atom-level electronic state value in

a molecule; it is a measure of the most electrophilic atom
in the molecule. Mechanistically, an electrophilic center is
important for covalent bond formation with nucleophilic
DNA, and so it is not surprising that Gmin is found to
be important in modelling.

• idwbar is the Bonchev-Trinajstic mean information con-
tent based on the distribution of distances in the graph.

• LogP is the partition coefficient between octanol and
water.

• nrings is the number of rings in a molecular graph
computed as the cyclomatic number (i.e. the smallest
number of bonds which must be removed such that no
ring remains).

The local descriptors are Atom-type counts. Atom types
are classifications based on element and bonding environment.
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TABLE I
THE DESCRIPTORS

Internal code Symbol
MDL042 SsCH3 acnt
MDL043 SdCH2 acnt
MDL044 SssCH2 acnt
MDL046 SdsCH acnt
MDL047 SaaCH acnt
MDL048 SsssCH acnt
MDL051 SdssC acnt
MDL052 SaasC acnt
MDL053 SaaaC acnt
MDL054 SssssC acnt
MDL055 SsNH2 acnt
MDL060 StN acnt
MDL062 SdsN acnt
MDL063 SaaN acnt
MDL064 SsssN acnt
MDL065 SdaaN acnt
MDL067 SsOH acnt
MDL068 SdO acnt
MDL069 SssO acnt
MDL070 SaaO acnt
MDL168 SHsOH Acnt
MDL174 SHother Acnt
MDL175 SHCHnX Acnt
MDL187 Gmin
MDL198 idwbar
MDL226 LogP
MDL230 nrings

Atom type assignments are used in functional group identifi-
cation, hydrogen addition, and hydrogen bond identification,
and to determine VDW radii. Except for the first capital ”S”,
each lower case letter represents a bond:
• each ”s” within an atom type designation represents a

single bond to that atom;
• each ”d” within an atom type designation represents a

double bond to that atom;
• each ”t” within an atom type designation represents a

triple bond to that atom;
• each ”a” within an atom type designation represents an

aromatic bond to that atom
In our model a few of them match known structural alerts.

The SdsN descriptor (for the nitrogen atom type N)̄, is asso-
ciated with the azo group, a structural alert. Molecules with
larger SdsN descriptor values tend to have larger calculated
output values. SsssN is the atom count of all tertiary nitrogens
in molecules. Tertiary nitrogen group alerts occur when the
nitrogen is attached to either an aromatic or partially unsatu-
rated rings. SaasC counts aromatic carbons with an attached
substituent atom. Is not an alert per se; however, it reflects the
nature of structural alerts attached to the ring system.

B. Model development and validation

On such a huge training patterns set the best assignment
found by the calibration procedure was (C, γ) = (8, 8), a
plot of the grid-search is reported in Figure 2. With this
parameterisation a model was trained and its prediction ability
evaluated on the untouched test set, normalised with the same

TABLE II
STATISTICS AND CONFUSION MATRICES ON TRAINING AND TEST SETS OF

THE SVM MODEL (C-SVC, RBF KERNEL, (C, γ) = (8, 8).

SVM training set 10-CV test set
accuracy: 92.3% 82% 83.2%

sensitivity: 93.5% 84.2% 86.6%
specificity: 90.8% 79.2% 78.9%

3380 chemicals classified as
(training set) mutagenic non-mutagenic

mutagenic 1766 122
non-mutagens 137 1355

845 chemicals classified as
(test set) mutagenic non-mutagenic

mutagenic 407 63
non-mutagens 79 296

scale factors used for the training set. Moreover, its robustness
was assessed by a stratified 10-folds cross-validation.

Fig. 2. Grid-search in the (C, γ) space of the objective function parameters
on a logarithmic scale (base 2). Each point represents a different parame-
terisation. Points on the same line has gained the same score by a 5-folds
cross-validation on the training set. In the middle the best parameterisation
assignment found (C, γ) = (8, 8).

The classifier has been evaluated for accuracy, sensitivity,
specificity. Sensitivity is the number of positive chemicals
correctly predicted divided by the total number of positives;
specificity is the number of negative chemicals correctly
predicted divided by the total number of negatives. Accuracy
is defined as the total number of chemicals correctly predicted
divided by the total number of chemicals.

As we can see in Table II, the prediction accuracy is good
under all points of view (accuracy, sensitivity and specificity).
These error percentages approach the average inter-laboratory
reproducibility error of the experimental test (15%) [22].

VI. CONCLUSIONS

Our hypothesis that a QSAR approach was a good method to
build models of non-congeneric compounds has been proved.
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In terms of accuracy our model, that uses performant
algorithms, can reach an accuracy very near to the rate
of the reproducibility of the experimental data in different
laboratories.

In terms of interpretability of our model, it uses a few global
descriptors and the MDL keys. Some MDL keys are related
to known structural alerts. However we should remember that
the interpretability of non linear models does not depend on
simple relations between input and output and the mix of the
descriptors cannot be translated into rules.

The next step in assessing our results can be devised in
splitting experimental data according to the different protocols
and examine each subset alone to understand whether the
results are similar or not.

Further research is foreseen. For chemical people it can
be wise to make a chemical interpretation of the MDL keys
involved in the model in terms of electrophilicity or reactivity
of the substance. In terms of computer science applications,
our model is in the direction of providing open source code
for the scientific community. Other few steps are needed in
order to create an open source version of the few proprietary
software now used to feed our algorithm, in particular some
of the descriptors.

The use of predictive models is growing, since they aim
to provide fast, reliable and quite accurate estimates of the
chemicals activity. These features make them suitable for
legislative purposes, and that is why they have been included
as an alternative tool for risk assessment in the new European
legislation on chemical production, called REACH (Registra-
tion, Evaluation, Authorisation and Restriction of Chemicals).
This legislation fixes the rules for chemical production in E.U.,
and one of its key points is that it requires a risk analysis for
each chemical placed in European market in amount greater
than 1 ton/year.

The proposed mutagenicity model is able to deal with the
REACH requirements.
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