
SELF LOCALIZATION OF MOBILE ROBOTS IN INDOOR
ENVIRONMENT

Giuseppina Gini , Francesco Amigoni, Andrea Bonarini,

Vincenzo Caglioti, Marco Somalvico

PM-AIR, Department of Electronics and Information, Politecnico di Milano, piazza L. da Vinci 32,
20133 Milano, Italy1

Phone Int +39 02 23993626, Fax Int +39 02 23993411, E-mail: gini@elet.polimi.it

Abstract: The self localization of mobile robots in unknown environments is here approached trough
the construction of maps based on sensors and recognition of natural landmarks. Our integrated
navigation system replicates some functions of natural systems as using little a-priori knowledge, and
using only sensors and camera on board. New images dynamically grow a map, constructed with simple
mathematics and heuristics. In the first system presented we rely only on passive vision from a single
camera. In the second we exploit a particular image deformation to obtain a complete view . Then we
explore the use of laser pointing for mapping. The use of more robots in the exploration and map
building is also developed.

Keywords: autonomous robot, self localisation, mapping, computer vision

 1. INTRODUCTION
We want robots to be able to navigate

autonomously in an unknown environment, using
as the principal source of data a vision system. A
single camera can solve problems in an indoor
environment, when the robot moves on a plane
surface.

Visually guided systems often use artificial
landmarks, while more advanced ones rely on
natural landmarks.

The self-location problem is important when
the robot has to move in autonomous way. Dead
reckoning reduces the location error, but is unable
to keep the error under a given threshold. When
used in telecontrol the self location is again
important: the robot starts from any position,
builds a map with any origin, and has to match the
new map with the standard one shown in the user
interface [Anousaki and Kyriakopoulos, 1999,
Thrun, 1998].

Autonomy in a moderately dynamic system
using vision is here developed with new algorithms
based on the use of a single camera. The map is
constructed from image interpretation, and
computing the transformation from a local to a
global map solves auto localization.

The same approach is developed with data
arising from laser pointing, with the difference that
the segmentation gives results less ambiguous than
in camera images.

Finally we give theoretical results in a system
where more than one robot cooperate in mapping
and navigating the environment.

The important aspect of all our approaches is
that they rely on natural landmark, and are suitable
for application also in urban environments.

Moreover, all the algorithms will improve their
performances in a parallel architecture both for the
classical image analysis step than for the mapping
step that involves a high number of comparisons.

In Section 2 we illustrate the first system,
making use of a single camera pointing at the floor.
The main problem here is the recognition of partial
maps seen during the navigation as part of the
global map constructed through exploration.

In Section 3 we introduce the techniques used
with special mirrors to see all around the robot.
The problem here is to study the geometric
properties of the images to find landmarks and
obstacles.

In Section 4 we introduce the techniques of
mapping with laser beams.

In Section 5 the multi-robot system is
illustrated.

2. FROM FLOOR IMAGES TO
MAPPING AND LOCALIZATION

Our experimental set-up includes a Robuter, a
PC, and a colour camera. The Robuter® is a mobile
robot with differential drive. The on-board
computer executes the motion commands and
communicates at 9600 baud through a serial link
with a PC. A sonar belt is integrated. The camera is

from Sony, PAL standard, with 768 columns of
512 pixels, is fixed and pointing to the floor.
Matrox Meteor frame grabber is used in single
acquisition. The flowchart of the global system is
in Fig. 1.

Image
acquisition

Analysis and floor
search

Map modification

some floor?

yes

No

Planning of the
possible path

yes

No

Path found? ?

move for a step the
robot in the given

direction

start

New goal
definition

Figure 1. The flowchart of the system.

The strong points in our work are:
• Floor analysis and obstacles detection in

single-camera images
• New reduced calibration algorithm
• Map creation using only visual data
• Self-localisation as maps matching.

 2. 1 Camera calibration
To find the correspondence between real and

image coordinates we developed a calibration
procedure. We chose the pinhole model to compute
world coordinates from image coordinates and the
focal distance (f) through H.

u'

v'

w'

















=

f 0 0 0

0 f 0 0

0 0 1 0

















*

x

y

z

1





















= H *

x

y

z

1





















 (1)

To account for real problems as the position of
the principal point, the aspect ratio, the α angle for

no orthogonal axes, we build the K transformation
from frame image to frame geometric-image:

K =
1 a *α u0

0 a v0

0 0 1

















 (2)

The transform from scene to image is so:

u'

v'

w'

















= K *

f 0 0 0

0 f 0 0

0 0 1 0

















* H *

x

y

z

t





















 (3)

We can multiply the 3 matrices and obtain M:

u'

v'

w'

















=
m1 m2 m3 m4

m5 m6 m7 m8

m9 m10 m11 m12
















*

x

y

z

t





















= M *

x

y

z

t





















 (4)

To calibrate the camera (estimating the 11
elements of M) we work in two phases: first from
image to floor, then from floor to robot. The robot
reference system has the origin in the middle of the
axis connecting the operated wheels, and the
orientation is forward.

In the first calibration phase the camera takes a
picture of a calibration object whose dimension is
known (a white square, 21-cm width), and the
vertex coordinates are computed. We choose all
the points of the calibration object to be on the
floor (z is null, and 3 elements of M are null). The
initial estimate of M is done using least squares to
match the reference square, then with Newton
method. The reference system so constructed is on
the floor and robot independent.

Then we construct the matrix to transform it
into the robot reference. During this second
calibration phase, pictures of the object are taken
from different positions and orientations of the
robot, and the minimization is solved as before.

Let x be the coordinate vector on the
ROBUTER, x~ the vector of the point in the
image, f the function computing the floor point in
the reference computed in the first phase, T the
matrix to estimate.

)~(* xfTx = (5)

T =

a b 0 h

c d 0 k

0 0 1 0

0 0 0 1





















=

cos(α) sin(α) 0 ∆x

−sin(α) cos(α) 0 ∆y

0 0 1 0

0 0 0 1





















To solve on the unknown α , x∆ , and y∆ (as
in Fig. 2) we define a function which uses M and
the available estimation of T to project the image
points in the world points and compute the
distance. The distance is then minimized

α

∆ x∆ y

Figure 2. From the reference system on the floor to the
robot reference system

A point in Cartesian space can be transformed

into pixel coordinates u and v using:

u'

v'

w'

















= M * T −1 *

x

y

0

1





















u =
u'

w'

v =
v'

w '

 (6)

For the reverse transformation,

19*

124)10*2(

610*
19*

)10*2(*)59*(
19*

)*124(*)59*(
12*8

mmu

ummSmum
D

mmv
mmu

mummmv
mmu

ummmmv
mvm

S

−
−+−

=

−+
−

−−
−

−−−−
= (7)

3

)
max_

),(
3(

,,
∑−

= bluegreenred moment
yxmoment

fx

and get
x'

y'

z'

















= T *

S

D

0

1





















 and
x

y

z

















=

x'
z'

y'
z'

0



















 (8)

The calibration problem is solved.

 2.2 Image analysis
The basic hypothesis is that the floor has a

uniform texture. Using statistical analysis we can
extract from the picture of the floor the areas
occupied by obstacles because they change the
regular pattern [Ayache, 1991, Horswill, 1993,
Mirmehdi and Petrou, 2000].

Since the image is in RGB format, for each
pixel the algorithm computes the mean and the 4th
order moment for each of the RGB components of
the pixel. The formulas for the red component are:

µ_red(x, y) =

red(i, j)
(i, j)∈Ι(x ,y)

∑
N

 and

m _red(x ,y) =

(red(i, j) − µ_red(i, j))4

(i, j) ∈Ι (x , y)
∑

N
 (9)

(N # pixels in the region)
The 4th order moment is significant because it

measures the disparity of the pixels: it has low
values in uniform areas, high when there is a sharp
change, as when an obstacle is seen on the floor.

To reduce computations the average and the
moment are not computed for every pixel but for a
subset of uniformly distributed pixels and by linear
interpolation for the other pixels. After
computation a new image is created with new
components for pixels constructed according to
mean and moment for each colour.

The new image is then transformed in HSL
format, filtered and transformed in binary,
removing the obstacles. This requires choosing a
dynamic threshold based on a little square region
in the bottom part of the image used as example of
the floor. In Fig. 3 we see an example

The formulas to compute the dynamic threshold
for L and H are constructed adding a static
component and a dynamic component modified by
a filter. The static and dynamic parameters are
manually set and depend on the floor texture and
on illumination conditions. The function filter is:

fx =
(3 − moment(x, y)

moment _maxred,green,blue
∑)

3
 (10)

Figure 3. An example.

 2.3 Mapping and path planning
The map is a grid map, with square cells

initialised to a mean numeric value. The value
represents how much the robot “trusts” in the cell
classification defined as free, obstacle, or
unknown. Whenever the cell is seen again as free
its vote is increased, if occupied is decreased. The
value is a vote, which can filter also moving
obstacles because temporary obstacles do not
affect too much the value of a free cell. The size of
the grid cell is chosen considering the needed

Reference zone

performances: using the Robuter, cells with a side
of 5cm give very good results.

Using the parameters obtained from camera
calibration, the binary image is mapped on the
floor plane and added to the map, in a position
obtained using the estimated pose. So, the map is
created and enlarged after every image analysed.
The map generated from the obstacle in Fig 3 is in
Figure 4, where the lighter area represents free
space, the darker cells represent obstacles, the
black are unknown, and the grey not yet allocated.

Figure 4 The map resulting

To create a new map we assign the start
position and a destination. To reach the destination
the robot will explore the world, looking at the
floor and generating obstacles. Every time a new
obstacle is detected, the robot computes the path to
reach the destination, and the map grows. To map
the entire environment it will be enough to give as
goal location a position unreachable, as outside a
wall.

Using the map the robot can navigate
autonomously in the environment towards a
specified goal pose. The path is found with A* on
the visibility-graph of expanded obstacles
[Latombe 1991]. Obstacles are enlarged by the half
of the robot-width, not considering its length; in
fact the robot moves forward and keeps obstacles
on the sides. To allow the robot to move in narrow
corridors with curves, the obstacles are enlarged
and also smoothed. In this way, the robot can pass
through very small passages, only a few cm wider
than the robot. However, not considering the robot
length implies that we have to take care of possible
frontal collisions with obstacles; this is avoided by
using sonar. In the same way highly dynamic
obstacles are avoided just stopping in front of them
and switching to another path.

 2.4 Self-localization
When the robot has a complete map of the

environment, it can auto-localize itself. To do this,
it creates a new map, starting from scratch, and
compares it with the complete map. The

comparison is mainly based on the angles between
the walls. The robot can upgrade its location
matching the global and the local maps.

x

y

 Mappa completa dell’ambiente

Reconstructed partial map

x

y

Position of the
second map

Complete map

Figure 5. Matching

So the problem of matching a partial map onto a
complete map, as in Fig 5; is based on the angles
characterizing obstacles: in indoor environments
usually they are 90°, or 180°. Starting from vector
quantization we individuate segments having a
common vertex. The map matching will find the
correspondence (position and orientation) of the
partial map in the global map using a vote system.
Each local angle is matched against all possible
global angles and the rototraslation matrix is
computed. Every match generates a hypothesis of
positioning of the local map. Each hypothesis has
an associated vote (weight):

180

21

*10

amplitudeamplitude

eweight

−−

= (11)
with the maximum for same amplitude angles.

The real position has a high vote, since all the
angles are correctly matched. To reflect on the
model the imprecision about data we associate a
gaussian with maximum equal to the vote to every
position. Summing up all the Gaussians we obtain
a surface with a maximum in the position where
the probability to find the robot is maximum, as in
Fig. 6.

The search for maximum is done considering
that the number of local maxims is the number of
the gaussians. Gaussians are represented in an
array, every cell initialised to the weight of the
respective hypothesis. Each maximum is moved to

the nearest cell containing a greater value of
weight. When no more cells have a greater value
the considered hypothesis is the local maximum.
The global maximum is found and gives x and y.
To find the orientation we use the orientation
information associated to the hypotheses.

1 5 9

13 17 21

25 29

33

37

1

7

13

19

25

31

37

0,00

0,50

1,00

1,50

2,00

2,50

3,00
0

5

10

15

20

25

30

35

40

0 10 20 30 40

Figure 6. Four hypotheses and their gaussian
representation.

To improve this algorithm, for each local

maximum the program increases the vote of the
associated position if this position matches two
segments in the maps. The matching is confirmed
only when

• The angular difference is less than a
threshold

• The centroid distance of the segments is
less than half of the greater segment

• The maximum distance of the segments
is less than a threshold.

The final weight is so computed in (12)

 (12)

which gives a low weight to segments far away
and with different amplitudes. In this way only the
correct position gets a high vote.

 3 SELF-LOCALIZATION WITH
OMNIDIRECTIONAL VISION
SENSORS

In this Section we introduce a panoramic vision
[Benosman, Kang, 2001] sensor [Bonarini,
2000][Bonarini et al. 2000][Lima et al., 2001]
covering the 360 degrees field of view around the
robot (omnidirectional vision). We will also
discuss how it can be used to support self-
localization. In the next section we will see how

robots equipped with this type of sensors can
exchange information with robots equipped with
other sensors for cooperative localization.

 3.1 The sensor
Omnidirectional vision makes it possible to

cover a 360 degrees field of vision, by analysing
only one image. This makes it possible to
implement fast vision sensors suitable for a wide
range of applications, such as: surveillance, robot
(and vehicle, in general) navigation, tracking. In
this section, we present our omnidirectional vision
system. Our vision system is based on a camera
facing upwards beneath a mirror. We have used
different types of mirrors. We discuss here only
results obtained by a conical mirror [Yagi et
al., 1994] and a multi-shape mirror [Bonarini et
al, 2000] obtained by the intersection of a
truncated cone and a sphere. The environment
surrounding the robot reflects in the mirror and the
camera takes an image that contains information
about what is surrounding the robot. The conical
mirror gives an image like the one presented in
Figure 8, taken in a corridor. The radial lines
correspond to vertical edges in the environment.

Figure 7. The omnidirectional sensor with the conical
mirror.

We have designed the multi-part mirror with

the specific aims of covering the widest area
around the robot, while maintaining enough
resolution on the far area to be able to identify the
smallest interesting object in the environment with
minimal resolution of 1 pixel/cm. At the same
time, we can recognize objects close to the sensor.
These requirements cannot be matched by the
classical shapes used for sensors of this kind [Yagi,
Kawato, Tsuji, 1995] [Benosman, Kang, 2001]:
cone, sphere, hyperbole, parabola.

2

tanmax_

*1

21

* K

cedis

eK

amplitudeamplitude

eKweight

−−−

=

Figure 8. An image taken by the conical mirror in a

corridor.

We have started by considering a cone-shaped

mirror, which was immediately discarded because
of the strong distortions it introduces in the image.
A benefit of this mirror shape lies in the possibility
to select the pan angle to obtain a wide field of
vision at will. Working with a spherical mirror, we
have noticed that it does not modify too much the
shape of objects, but a large percentage of the
image is useless because it contains the chassis of
the underneath robot. With this system we have
obtained a vision field ranging more than 5 m in
any direction, but the resolution of the image
obtained in this way did not match the
specifications. Therefore, it has been necessary to
find a trade-off between the bend radius of the
mirror and the height where it was placed,
avoiding an excessive reduction of the vision field,
or its exaggerated opening with drastic reductions
of the resolution. We have designed a mirror
composed of a sphere intersecting a reversed cone.
This shape allows exploiting the characteristics of
the spherical mirror to a distance of 2 meters, so
the objects that fall in this range are not much
deformed and have a satisfying resolution. The
objects at a distance greater than 2 meters are
reflected in the conical part of the mirror, designed
to allow the identification of objects at a distance
up to 6 m with sufficient resolution. A typical
image taken from the multipart-mirror is in fig. 9.

Figure 9. An image taken in a heat production plant.

 3.2 Localization of an object with the
omnidirectional sensor

For localization purposes, only vertical edges in
the environment (radial edges on the image) are
considered. We have developed optimised
algorithms to detect these edges, whose position is
estimated with an error of about 2% in distance
and ±1 degree in position.

Self localization is based on triangulation on the
most characteristic edges, selected on the basis of
their position, their reliability, and their persistence
in time, during the movement of the robot.

Knowing the angular and linear speed of the
robot [u(t),v(t)], let us consider an object (in our
case an edge) P whose position at time t1 is
P X Y Z1 1 1 1(, ,) and whose relative speed at time
()t t1 + are [− + − +u t t v t t(), (),1 1 0]. The position
of P at time ()t t1 + is given by [Yagi, 1995]:

X u t t dt XP
t

t

= − + +
=

∫ ()1
0

1 (13)

Y v t t dt YP
t

t

= − + +
=

∫ ()1
0

1 (14)

Z Zp = 1 (15)

Since the relationship between the θ and the
position oP is:

tg
Y

X

p

p
θ = (16)

it is possible to obtain the relationship between
the azimuth and the position of an object at time
t1+t as:

∫

∫

=

=

++−

++−
=+ t

t

t

t

Xdtttu

Ydtttv

tttg

0

11

0

11

1

)(

)(

)(θ (17)

Knowing the azimuth θ in two subsequent
images, it is possible to find the position of the
object with respect to the robot by triangulation:









−
−

•







−
−

=







−

3

2

1

3

2

1

1

)3()3(

)2()2(

1

1

θ
θ

θ
θ

tgUV

tgUV

tg

tg

Y

X
 (18)

tg tgθ θ2 3≠
For i in {2,3}:

∫
=

+−=
t

t

dtittuiU
0

1))(()((19)

∫
=

+−=
t

t

dtittviV
0

1))(()((20)

where 2θ and 3θ represent respectively the

azimuth θ after a time t2 and t3 .

 3.3 Self-localization with the
omnidirectional sensor

The triangulation method proposed above may
have some problems due to imperfect knowledge
of the elements used to localize edges in the
environment. We have faced these problems by
filtering techniques and heuristics used to select
the reference edges. Let us discuss these first. We
only consider edges that can be tracked for
enough time while the robot is moving. Among
them, we select a set of relevant edges basing on
the following considerations. Since the precision
of the localization is higher for closer edges, these
are preferred to more distant ones. Since
localization of the object has higher quality when
the position of the object detected in two
subsequent time points is higher, lateral edges are
preferred to edges in the direction of movement of
the robot. Moreover, we consider a set of
reference edges evenly distributed in the azimuth
space, so to reduce systematic errors.

A sort of Kalman filtering is done on the track
of each edge in time. If the robot is not rotating
with respect to the tracked edge, this follows an
arctg curve in time. We estimate the expected
position of the tracked edge at a given time, and
correct the estimate as the robot proceeds, by

considering also the information coming from the
other tracked edges.

In Figure 10, we show an example of the edge
tracks. In the right top part of the figure we have
represented a robot (the hatched rectangle with a
circle in the middle) moving with respect to an
object from position A to positions B and C. In the
lower part of the figure we see the plot of the
azimuth values for the edges detected by the
sensor on the robot, during time. At each instant,
the azimuth values detected are associated to an
edge already detected, or to a new edge, as it
happens at point B, where edge number 4
becomes visible. The shape of the plot can be
estimated and expectations can be generated.

 4. FROM POLAR RANGE SENSOR
MAPS TO SELF LOCALIZATION

The general problem we address here is to
localize a robot equipped with a laser polar range
sensor. A laser polar range sensor measures the
distance between laser origin and the objects in
the surrounding environment along several rays
(at a fixed height from the floor). The rays sweep
an angle of 180 degrees in front of the robot and
are equally spaced every 0.5 degrees.

A B C

2

3

4

1

3 ,2 ,1 2 , 1 2 ,1 ,4 1 , 4

y

x

-9 0 °

t i m e

0 °

BA C

ϑϑ

Figure 10. A sample movement and the respective edge tracks.

The points acquired from a scan are
transformed in a set of lines called partial map.
The devised localization method is actually
independent from the sensor that perceives the
partial maps provided that they are sets of
segments.

The localization method integrates two partial
maps called M1 and M2. The method is composed
of two major steps:

• find possible transformations of M2 on M1;
• evaluate every transformation to identify the

best match between M1 and M2.
We note that the partial maps are the result of

the perception activities of a single robot in two
different locations. They can as well be the result
of perception of a pair of robots in two different
locations.

Let us start by the first step: how to find
possible transformations. The partial maps are
analysed in order to extract the landmarks that can
play as basis to integrate the partial maps together.
We use corners as landmarks. A corner is an angle
formed by two segments. A transformation is a
roto-translation that brings at least one angle of M2
(say α2) on an equal angle of M1 (say α1). A
transformation is thus a triple <Xt, Yt, <Xr, Yr,
θr>>. (Xt, Yt) is the translation needed to move the
vertex of α2 on the vertex of α1. θr is the rotation to
move one line of α2 on the same direction of the
corresponding line of α1. The rotation is centred in
(Xr, Yr) that is the vertex of α1.

For each partial map, we look at all angles
formed by segments in the map. On the basis of
these angles all the possible transformations are
generated.

The second step is the evaluation of the
transformations. Every transformation found in the
previous step is evaluated to find the best one. To
find the measure of a transformation t we move
M2 on M1 according to t, then we evaluate the
approximate length of the segments of M1 that
match with segments of M2. Thus, the measure of
a transformation is the length of corresponding
segments. Once the best transformation tb has been
found, the second partial map M2 is transformed to
the reference frame of M1 according to tb. In this
way, the point P corresponding to the origin of M2
in the reference frame of M1 gives the position of
the robot while taking the partial map M2. Thus, a
localization of the robot based only on the
geometrical feature of the environment id obtained.

The described method calls for an
implementation on a parallel computer. For
example, the process of evaluating the possible
transformations is composed of a number of

similar activities, namely evaluate a
transformation, that operate on different data and
that can be conveniently distributed over the
processors of a parallel computer. This could
improve the performance of the system with
respect to the sequential evaluation of the
transformations on a single processor.

The experimental results of the method are now
described. The quality of the partial maps acquired
by the mobile robot in an environment heavily
depends on the type of environment: corridors are
mainly composed of long “good” segments, open
spaces and offices are mainly composed of a mess
of short “bad” segments. The partial maps used in
the experiments have been taken by the robot at
locations where the robot was manually driven.
The distance between two successive origins of
scan is about 1 meter. This value has been
experimentally determined, since we notice that
with distance between scans greater than 1.5
meters the integration rarely succeeded (because
the two partial maps have only a small common
portion where it is difficult to find good angles for
transformation).

It is too expensive to find and evaluate all the
possible transformations between two partial maps.
In fact, there can be n1

2n2
2 possible

transformations, where n1 and n2 are the numbers
of segments in M1 and M2, respectively. Moreover,
only few of the possible transformations are
significant, namely bring the two partial maps in a
reasonable position. It is obvious that the fact that a
transformation is significant can be discovered
only when it is evaluated. We have used four
possible methods for finding a set of significant
transformations between the two partial maps. The
methods adopt different techniques to identify the
angles on which transformations are based.

Angles Between Successive Segments. For each
partial map, we look only at angles between two
successive segments. The method proceeds in two
parts: finding the angles in the partial maps and
finding the transformations between them. We note
that the first part of the algorithm heavily relies on
the assumption that the segments in M1 and in M2
are ordered in some way.

Angles Between Randomly-Picked Segments.
For each partial map, we look at angles between
two segments that are randomly picked up among
the most significant ones. In order to do this, we
assign high probability to be picked up to longest
segments, since they carry the most precise
information. The method tries first to transform M2
on M1 according to angles between longest
(randomly selected) segments. If it is not possible,
or if the best obtained match is not good enough,

the algorithm considers shorter and shorter
segments to find a transformation that gives a good
match.

Angles Between Perpendicular Segments. For
each partial map, we look at angles between
segments that are perpendicular. This method is
convenient for indoor environments, where the
presence of walls usually produces perpendicular
segments. The method is based on the creation of
histograms. The histogram of M1 (and, in similar
way, that of M2) is an array with a number of
elements equal to the number K of buckets in
which the possible orientations of segments (from
0 to π, with respect to a fixed axis) are divided.
Each element Li of the histogram of M1 is the list
of segments of M1 with orientation (relative to a
fixed axis) between π/K*i and π/K*(i+1). To each
element Li of the histogram of M1 is associated a
value: the sum of the lengths of the segments in Li.
The principal direction of a partial map is defined
as the element of the histogram with maximum
value. The normal direction of a partial map is
defined as the element of the histogram that is π/2
away from the principal direction.

All Transformations. For each partial map, we
look at all angles formed by segments in the map
and generate all the possible transformations.

Each scan is usually composed of a number of
segments ranging from 20 to 100, according to the
kind of environment. The possible transformations
for a pair of scans range from one hundred to some
thousands, depending on the method selected and
on the number of angles in the scans. The time
required carrying on the whole process of
integration of two partial maps range from few
seconds to dozens of seconds on a 700MHz
Pentium III processor.

The proposed method is robust with respect to
changes in the environment in which the robot is
localizing itself. For example, in Figure 11, in the
first partial map there is a partially open door (left
side) while during the scanning of the second
partial map (the door was closed. The method finds
the correct integration as in Figure 12.

Figure 11. Mapping with a door: open or closed.

Figure 12. Final map

 5. COOPERATIVE LOCALIZATION
OF MULTI-ROBOT SYSTEMS

In this Section, we propose a framework for the

cooperative localization of a system consisting of n
mobile robots. Many results are available on the
self-localization of single mobile robots (e.g., [Fox
et al. 1998, Borghi, Caglioti 1998]). Recently,
attention has been focused towards to multi-robot
localization: in the work of [Thrun et al. 1999]
only partial information is maintained (the so-
called factorial representation) about the pose of
the robots.

In this section, complete information about
robot pose is maintained and updated through an
efficient distributed process: this is made possible
by adopting Gaussian distributions for the involved
parameters. In this framework, there is no need for
any centralized agent: each single mobile robot is
equipped with one or more sensors (no central
sensor exists). In addition, the localization is
performed by updating a current estimate of the

robot poses in correspondence of each sensor
measurement: to update the current estimate, the
robots communicate with each other and update
locally stored information: again, no central site
exists, where the whole pose information is stored
and maintained. The map of the robot environment
is supposed to be known, modulo moving
obstacles. Each robot i perform sensor
measurements, which can be aimed either at the
environment or at another mobile robot j.

It is shown that, under broad hypotheses, the
problem of maintaining and updating pose
information is scalable, i.e., the time and space
needed for updating the estimate at each of the n
mobile robots is of the order of 1/n of the time and
space that would be needed for update the estimate
of the robots by a centralized agent.

The following hypotheses are assumed:
• the pose estimation errors and the

measurement errors are supposed to be
mutually gaussian;

• the pose estimation errors are kept small
enough (e.g., by dead reckoning), such that
the relationships between errors in the
different parameters can be well
approximated by linear relations;

• the computational cost for broadcasting a
datum from a single robot to the remaining
ones is O(n).

First, let us calculate the space complexity and
the time complexity of updating the pose
estimation of n robots by means of a centralized
agent within the above described gaussian
framework. To correctly update pose estimates,
both the pose estimates and the self- and mutual-
correlations must be maintained and updated. This
requires O(n2) time using O(n2) storage, in
correspondence to each sensor measurement. This
process is described by the Kalman estimator (1)
below.

By using measures related to the relative
positions between robots (or between a robot and
the environment), the pose estimate updating
problem is shown to be scalable: the estimate
update corresponding to each sensor measurement
can be performed in O(n) time by distributing the
process among the n robots. In addition, each robot
only needs to maintain O(n) data in its memory.

Now we consider a system consisting of n
mobile robots, which navigate within a known
environment. In order to maintain an estimate of
the pose of the robots, each robot performs a
sensor measurement aimed either at the
environment or at another robot. Once such a
sensor measurement has been performed, the
measuring robot updates its pose estimate and the

correlation between its pose and the pose of the
other robot, and it propagates the information
towards the remaining robots, which in turn update
both estimate and correlations.

Let T
iiii YXx][ϑ= be the vector of the

pose parameters of the mobile robot i, where
][ii YX are the coordinates of the origin of a

reference attached to the robot i, while iϑ is the
orientation angle of the abscissa axis of this
reference.

Let =x]...[1

T

n
T xx T

indicate the column vector formed by the pose
vectors of the n mobile robots.

Let us indicate by =x]...[1

T

n
T xx T the

vector collecting the current estimates of the poses
of the robots. Let iiΣ indicate the 3 x 3 covariance
matrix of the pose parameters of robot i, and let

ijΣ indicate the correlation matrix between the

pose parameters of robot i and the pose parameters
of robot j

The covariance matrix of the pose vector x is
given by

nnn

n

ΣΣ

ΣΣ
=Λ

...

.........

...

1

111

Suppose that a measurement z is taken, whose
result depends on some of the poses ix : the
linearization of the relationships between z and x
can

z = H x + w,
where w is a measurement error, which is

supposed to be independent of x, and H is the

Jacobian matrix of z with respect to x. If 2σ is the
variance of the error w, the a posteriori Kalman
estimate of the pose parameters, and its covariance
matrix are given by:

Λ+ΛΛ−Λ=Λ

−+ΛΛ+=
−

−

HHHH

xHzHHHxx
TT

TT

12

12

)('

)()(ˆ

σ

σ
 (21)

Now consider the case where the measurement
z only depends on the relative pose between robot i
and robot j: from wxhxhz jjii ++= the

expression of H becomes
]0...00...00...0[ji hhH =

the expression of THΛ becomes

T
jnj

T
ini

T
jj

T
ii

T
jj

T
ii

T

hh

hh

hh

H

σσ

σσ

σσ

+

+
+

=Λ
...

22

11

and the expression of THHΛ becomes:

T
jjjj

T
jiji

T
iiii

T hhhhhhHH Σ+Σ+Σ=Λ 2 (22)

With these expressions, the a posteriori
estimates of the poses of the mobile robots are

)()

2)((ˆ

12
jjii

T
jjjj

T
jiji

T
iiii

T
jkj

T
ikikk

xhxhzhh

hhhhhhxx

−−+Σ+

Σ+ΣΣ+Σ+=
−σ

(23)

while the a posteriori self-correlations are
−Σ=Σ kkkk '

)()

2)((

12
jkjiki

T
jjjj

T
jiji

T
iiii

T
jkj

T
iki

hhhh

hhhhhh

Σ+Σ+Σ

+Σ+ΣΣ+Σ
−σ

 (24)

and the a posteriori cross-correlations are
−Σ=Σ klkl '

)()

2)((

12
jljili

T
jjjj

T
jiji

T
iiii

T
jkj

T
iki

hhhh

hhhhhh

Σ+Σ+Σ

+Σ+ΣΣ+Σ
−σ

 (25)

All these expressions can be locally calculated
by any single robot, using an O(n) storage, in O(n)
time. In fact, the following information is
propagated from the measuring robot i to the other
ones: the term (2), ih , jh , ji xx , . These O(1)

items only need O(n) time to be propagated to all
robots. Each robot k can calculate expression (3)
and (4) in constant time using O(n) storage, while a
total O(n) time (using O(n) storage) is sufficient to
calculate the n-1 updated cross-correlations (5): in
fact the central factor in round brackets is
immediately calculated from term (2), while the
other factors are calculated by combining the
broadcasted terms plus the locally stored terms

klΣ .
The obtained result can be summarized by the

following theorem:
Theorem. Under the hypotheses illustrated above,
the pose estimate updating process is scalable over
the n robots: in correspondence to any sensor
measurement, the global pose estimate can be
updated in O(n) time using O(n) storage at each
robot.

A preliminary implementation of the approach
described in this Section has been carried on two
mobile robots: one equipped with an orientable
laser range finder, and the other equipped with an
omni-directional vision sensor (COPIS).

Both robots navigate within the hall of our
Department, whose map is known. After a few
seconds, any robot performs a sensor
measurement, either aimed at the other robot, or
aimed at the environment (according both to
“visibility” conditions and to uncertainty criteria
[Caglioti 2001]).

After each sensor measurement, both robots
update their pose estimate and the correlation
matrix.

An example is reported in Figure13, illustrating
the estimate updating after Robot 1 performs a
single range measurement with its laser range
finder. The estimate update depends not only on
the measurement result, but also on the current
estimate and correlation matrix.

It can be noticed how the global pose estimate
improves by virtue of the sensor measurement: the
apparently small estimate variation is due to the
fact that a single parameter is measured (namely,
the distance between the range sensor of Robot 1
and the surface of Robot2 along a certain direction)
in comparison with the six parameters
characterizing the global pose of the two robots.

6. CONCLUSIONS
The unusual aspects of our integrated

navigation systems are: simple design, efficient use
of special properties of the environment, and large
autonomy.

Efficiency and reliability are due to various
factors. The specialization of the environment
allows the robot to reduce the vision computation.
The use of simple reactive strategies reduces the
risk of failures, because obstacle avoidance is
always active. Finally, the environment does not
need any modification to insert the robot. As
illustrated in the previous sections, the uncertainty
of the world is simply managed through heuristics
and through a strict use of information only
obtained through sensors.

Our results confirm that solutions to the auto
localizations are available in unstructured
environments searching for natural landmarks.

2000

0

4000

6000

RRoobboo tt 22

RRoobboo tt 11

RRoobboott 11
 xx yy tthheettaa
AAccttuuaall pp oossee 44448855 445511 00..2299
OOddoomm ee ttrr iicc ee ss ttiimmaa ttee 44449988 447733 00..1122
UUppddaattee dd ee ss ttiimm aattee 44448888 445577 00..1155

 xx yy tthheettaa
AAccttuuaa ll pp oossee 33997766 22999955 9900..33
OOddoo mm eettrr iicc eessttiimm aa ttee 33998866 22999977 9900..2266
UUppdd aatteedd ee ss ttiimmaattee 33998833 22999966 9900..3322

RRoobboott 22

Actual pose

Odometric data

Updated
estimate

Figure 13: Updated estimates after a sensor measurement by Robot 1

REFERENCES
[Anousaki and Kyriakopoulos, 1999] G.C.

Anousaki, K.J. Kyriakopoulos. Simultaneous
Localization and Map Building for Mobile
Robot Navigation. IEEE Robotics &
Automation Mag, September 1999, 42-53.

[Ayache, 1991] N. Ayache. Artificial vision for
mobile robots. The Mit Press, Cambridge,
Massachusetts, 1991.

[Benosman, Kang 2001] R. Benosman, S. B. Kang
(Eds.) Panoramic Vision: sensors, theory and
applications, Springer Verlag, Berlin, D.

[Bonarini, 2000] A. Bonarini, The Body, the Mind
or the Eye, first? In M. Veloso, E. Pagello, M.
Asada (Eds), Robocup99 – Robot Soccer World
Cup III, Springer Verlag, Berlin, 210–221,
2000.

[Bonarini et al, 2000] A. Bonarini, P. Aliverti, M.
Lucioni. An omnidirectional sensor for fast
tracking for mobile robots. IEEE Transactions
on Instrumentation and Measurement, 49, 3,
509-512, 2000.

[Borghi and Caglioti 1998] G.Borghi, V.Caglioti.
Minimum uncertainty explorations in the self-
localization of mobile robots in curvilinear
environments. IEEE Trans. on Robotics and
Automation, 1998.

[Caglioti, 2001] V.Caglioti. An entropic criterion
for minimum uncertainty sensing in recognition

and localization tasks: theoretical and
conceptual aspects IEEE Trans. SMC,Part B,
2001.

[Horswill, 1993] I. Horswill. Polly: A Vision-
Based Artificial Agent. Proc. AAAI-93, AAAI
Press/The MIT Press, 1993.

[Latombe, 1991] J.-C. Latombe. Robot motion
planning. Kluwer academic publishers, Boston,
1991.

[Lima et al., 2001] P. Lima, A. Bonarini, C.
Machado, F. M. Marchese, C. Marques, F.
Ribeiro, D. G. Sorrenti. Omnidirectional
catadioptric vision for soccer robots. Int J of
Robotics and Autonomous Systems, 36, 2-3, 87-
102, 2001.

[Mirmehdi and Petrou, 2000] M. Mirmehdi, M.
Petrou. Segmentation of color textures. IEEE
Trans PAMI, Vol 22, n° 2, 142-159, 2000

[Thrun, 1998] S. Thrun. Learning metric-
topological maps for indoor mobile robot
navigation. Artificial Intelligence, 99, 21-71,
1998.

[Thrun et al., 1999] D.Fox, W.Burgard, H.Kruppa,
S.Thrun. A Monte Carlo algorithm for multi-
robot localization. Techn. Rep. Carnegie
Mellon University, CMU-CS-99-120, 1999.

[Yagi et al., 1994] Y. Yagi, S. Kawato, S. Tsuji,
Real-Time omnidirectional Image Sensor
(COPIS) for Vision-Guided Navigation, IEEE
Trans R&A, 10, 1, 11-22, 1994.

