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Abstract: The self localization of mobile robots in unknown environments is here approached trough 
the construction of maps based on sensors and recognition of natural landmarks. Our integrated 
navigation system replicates some functions of natural systems as using little a-priori knowledge, and 
using only sensors and camera on board. New images dynamically grow a map, constructed with simple 
mathematics and heuristics. In the first system presented we rely only on passive vision from a single 
camera. In the second we exploit a particular image deformation to obtain a complete view . Then we 
explore the use of laser pointing for mapping. The use of more robots in the exploration and map 
building is also developed. 
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 1. INTRODUCTION 
We want robots to be able to navigate 

autonomously in an unknown environment, using 
as the principal source of data a vision system. A 
single camera can solve problems in an indoor 
environment, when the robot moves on a plane 
surface.  

Visually guided systems often use artificial 
landmarks, while more advanced ones rely on 
natural landmarks.  

The self-location problem is important when 
the robot has to move in autonomous way. Dead 
reckoning reduces the location error, but is unable 
to keep the error under a given threshold. When 
used in telecontrol the self location is again 
important: the robot starts from any position, 
builds a map with any origin, and has to match the 
new map with the standard one shown in the user 
interface [Anousaki and Kyriakopoulos, 1999, 
Thrun, 1998]. 

Autonomy in a moderately dynamic system 
using vision is here developed with new algorithms 
based on the use of a single camera. The map is 
constructed from image interpretation, and 
computing the transformation from a local to a 
global map solves auto localization.  

The same approach is developed with data 
arising from laser pointing, with the difference that 
the segmentation gives results less ambiguous than 
in camera images. 

Finally we give theoretical results in a system 
where more than one robot cooperate in mapping 
and navigating the environment. 

The important aspect of all our approaches is 
that they rely on natural landmark, and are suitable 
for application also in urban environments. 

Moreover, all the algorithms will improve their 
performances in a parallel architecture both for the 
classical image analysis step than for the mapping 
step that involves a high number of comparisons. 

In Section 2 we illustrate the first system, 
making use of a single camera pointing at the floor. 
The main problem here is the recognition of partial 
maps seen during the navigation as part of the 
global map constructed through exploration.  

In Section 3 we introduce the techniques used 
with special mirrors to see all around the robot. 
The problem here is to study the geometric 
properties of the images to find landmarks and 
obstacles. 

In Section 4 we introduce the techniques of 
mapping with laser beams.  

In Section 5 the multi-robot system is 
illustrated. 

2. FROM FLOOR IMAGES TO 
MAPPING AND LOCALIZATION 

Our experimental set-up includes a Robuter, a 
PC, and a colour camera. The Robuter® is a mobile 
robot with differential drive. The on-board 
computer executes the motion commands and 
communicates at 9600 baud through a serial link 
with a PC. A sonar belt is integrated. The camera is 



from Sony, PAL standard, with 768 columns of 
512 pixels, is fixed and pointing to the floor. 
Matrox Meteor frame grabber is used in single 
acquisition. The flowchart of the global system is 
in Fig. 1. 
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Figure 1. The flowchart of the system. 
 

The strong points in our work are: 
• Floor analysis and obstacles detection in 

single-camera images 
• New reduced calibration algorithm 
• Map creation using only visual data 
• Self-localisation as maps matching. 

 2. 1 Camera calibration 
To find the correspondence between real and 

image coordinates we developed a calibration 
procedure. We chose the pinhole model to compute 
world coordinates from image coordinates and the 
focal distance (f) through H. 
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To account for real problems as the position of 
the principal point, the aspect ratio, the α angle for 

no orthogonal axes, we build the K transformation 
from frame image to frame geometric-image: 
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The transform from scene to image is so: 
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We can multiply the 3 matrices and obtain M: 
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To calibrate the camera (estimating the 11 
elements of M) we work in two phases: first from 
image to floor, then from floor to robot. The robot 
reference system has the origin in the middle of the 
axis connecting the operated wheels, and the 
orientation is forward.  

In the first calibration phase the camera takes a 
picture of a calibration object whose dimension is 
known (a white square, 21-cm width), and the 
vertex coordinates are computed. We choose all 
the points of the calibration object to be on the 
floor (z is null, and 3 elements of M are null). The 
initial estimate of M is done using least squares to 
match the reference square, then with Newton 
method. The reference system so constructed is on 
the floor and robot independent.  

Then we construct the matrix to transform it 
into the robot reference. During this second 
calibration phase, pictures of the object are taken 
from different positions and orientations of the 
robot, and the minimization is solved as before.  

Let x be the coordinate vector on the 
ROBUTER, x~  the vector of the point in the 
image, f the function computing the floor point in 
the reference computed in the first phase, T the 
matrix to estimate. 
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To solve on the unknown α , x∆ , and y∆ (as 
in Fig. 2) we define a function which uses M and 
the available estimation of T to project the image 
points in the world points and compute the 
distance. The distance is then minimized  
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Figure 2. From the reference system on the floor to the 
robot reference system 

 
A point in Cartesian space can be transformed 

into pixel coordinates u and v using:  
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For the reverse transformation,  
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The calibration problem is solved. 

 2.2 Image analysis 
The basic hypothesis is that the floor has a 

uniform texture. Using statistical analysis we can 
extract from the picture of the floor the areas 
occupied by obstacles because they change the 
regular pattern [Ayache, 1991, Horswill, 1993, 
Mirmehdi and Petrou, 2000]. 

Since the image is in RGB format, for each 
pixel the algorithm computes the mean and the 4th 
order moment for each of the RGB components of 
the pixel. The formulas for the red component are: 

µ_red(x, y) =

red(i, j)
( i, j )∈Ι(x ,y )

∑
N

   and  

m _red(x ,y) =

(red(i, j) − µ_red(i, j))4

( i, j) ∈Ι ( x , y)
∑

N
 (9) 

(N # pixels in the region)  
The 4th order moment is significant because it 

measures the disparity of the pixels: it has low 
values in uniform areas, high when there is a sharp 
change, as when an obstacle is seen on the floor. 

To reduce computations the average and the 
moment are not computed for every pixel but for a 
subset of uniformly distributed pixels and by linear 
interpolation for the other pixels. After 
computation a new image is created with new 
components for pixels constructed according to 
mean and moment for each colour. 

The new image is then transformed in HSL 
format, filtered and transformed in binary, 
removing the obstacles. This requires choosing a 
dynamic threshold based on a little square region 
in the bottom part of the image used as example of 
the floor. In Fig. 3 we see an example  

The formulas to compute the dynamic threshold 
for L and H are constructed adding a static 
component and a dynamic component modified by 
a filter. The static and dynamic parameters are 
manually set and depend on the floor texture and 
on illumination conditions. The function filter is: 
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Figure 3. An example. 

 2.3 Mapping and path planning 
The map is a grid map, with square cells 

initialised to a mean numeric value. The value 
represents how much the robot “trusts” in the cell 
classification defined as free, obstacle, or 
unknown. Whenever the cell is seen again as free 
its vote is increased, if occupied is decreased. The 
value is a vote, which can filter also moving 
obstacles because temporary obstacles do not 
affect too much the value of a free cell. The size of 
the grid cell is chosen considering the needed 

 

Reference zone 



performances: using the Robuter, cells with a side 
of 5cm give very good results.  

Using the parameters obtained from camera 
calibration, the binary image is mapped on the 
floor plane and added to the map, in a position 
obtained using the estimated pose. So, the map is 
created and enlarged after every image analysed. 
The map generated from the obstacle in Fig 3 is in 
Figure 4, where the lighter area represents free 
space, the darker cells represent obstacles, the 
black are unknown, and the grey not yet allocated. 

Figure 4  The map resulting 
 

To create a new map we assign the start 
position and a destination. To reach the destination 
the robot will explore the world, looking at the 
floor and generating obstacles. Every time a new 
obstacle is detected, the robot computes the path to 
reach the destination, and the map grows. To map 
the entire environment it will be enough to give as 
goal location a position unreachable, as outside a 
wall. 

Using the map the robot can navigate 
autonomously in the environment towards a 
specified goal pose. The path is found with A* on 
the visibility-graph of expanded obstacles 
[Latombe 1991]. Obstacles are enlarged by the half 
of the robot-width, not considering its length; in 
fact the robot moves forward and keeps obstacles 
on the sides. To allow the robot to move in narrow 
corridors with curves, the obstacles are enlarged 
and also smoothed. In this way, the robot can pass 
through very small passages, only a few cm wider 
than the robot. However, not considering the robot 
length implies that we have to take care of possible 
frontal collisions with obstacles; this is avoided by 
using sonar. In the same way highly dynamic 
obstacles are avoided just stopping in front of them 
and switching to another path. 

 2.4  Self-localization 
When the robot has a complete map of the 

environment, it can auto-localize itself. To do this, 
it creates a new map, starting from scratch, and 
compares it with the complete map. The 

comparison is mainly based on the angles between 
the walls. The robot can upgrade its location 
matching the global and the local maps. 
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Figure 5. Matching 

So the problem of matching a partial map onto a 
complete map, as in Fig 5; is based on the angles 
characterizing obstacles: in indoor environments 
usually they are 90°, or 180°. Starting from vector 
quantization we individuate segments having a 
common vertex. The map matching will find the 
correspondence (position and orientation) of the 
partial map in the global map using a vote system. 
Each local angle is matched against all possible 
global angles and the rototraslation matrix is 
computed. Every match generates a hypothesis of 
positioning of the local map. Each hypothesis has 
an associated vote (weight): 

180

21

*10
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−−

=         (11) 
with the maximum for same amplitude angles. 

The real position has a high vote, since all the 
angles are correctly matched. To reflect on the 
model the imprecision about data we associate a 
gaussian with maximum equal to the vote to every 
position. Summing up all the Gaussians we obtain 
a surface with a maximum in the position where 
the probability to find the robot is maximum, as in 
Fig. 6. 

The search for maximum is done considering 
that the number of local maxims is the number of 
the gaussians. Gaussians are represented in an 
array, every cell initialised to the weight of the 
respective hypothesis. Each maximum is moved to 



the nearest cell containing a greater value of 
weight. When no more cells have a greater value 
the considered hypothesis is the local maximum. 
The global maximum is found and gives x and y. 
To find the orientation we use the orientation 
information associated to the hypotheses. 
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Figure 6. Four hypotheses and their gaussian 
representation. 

 
To improve this algorithm, for each local 

maximum the program increases the vote of the 
associated position if this position matches two 
segments in the maps. The matching is confirmed 
only when 

• The angular difference is less than a 
threshold 

• The centroid distance of the segments is 
less than half of the greater segment 

• The maximum distance of the segments 
is less than a threshold. 

The final weight is so computed in (12)  
 

 (12) 
 

which gives a low weight to segments far away 
and with different amplitudes. In this way only the 
correct position gets a high vote. 

 3 SELF-LOCALIZATION WITH 
OMNIDIRECTIONAL VISION 
SENSORS 

In this Section we introduce a panoramic vision 
[Benosman, Kang, 2001] sensor [Bonarini, 
2000][Bonarini et al. 2000][Lima et al., 2001] 
covering the 360 degrees field of view around the 
robot (omnidirectional vision). We will also 
discuss how it can be used to support self-
localization. In the next section we will see how 

robots equipped with this type of sensors can 
exchange information with robots equipped with 
other sensors for cooperative localization. 

 3.1 The sensor 
Omnidirectional vision makes it possible to 

cover a 360 degrees field of vision, by analysing 
only one image. This makes it possible to 
implement fast vision sensors suitable for a wide 
range of applications, such as: surveillance, robot 
(and vehicle, in general) navigation, tracking. In 
this section, we present our omnidirectional vision 
system. Our vision system is based on a camera 
facing upwards beneath a mirror. We have used 
different types of mirrors. We discuss here only 
results obtained by a conical mirror [Yagi et 
al., 1994] and a multi-shape mirror [Bonarini et 
al, 2000] obtained by the intersection of a 
truncated cone and a sphere. The environment 
surrounding the robot reflects in the mirror and the 
camera takes an image that contains information 
about what is surrounding the robot. The conical 
mirror gives an image like the one presented in 
Figure 8, taken in a corridor. The radial lines 
correspond to vertical edges in the environment. 

 

 
 

Figure 7. The omnidirectional sensor with the conical 
mirror. 

 
We have designed the multi-part mirror with 

the specific aims of covering the widest area 
around the robot, while maintaining enough 
resolution on the far area to be able to identify the 
smallest interesting object in the environment with 
minimal resolution of 1 pixel/cm. At the same 
time, we can recognize objects close to the sensor. 
These requirements cannot be matched by the 
classical shapes used for sensors of this kind [Yagi, 
Kawato, Tsuji, 1995] [Benosman, Kang, 2001]: 
cone, sphere, hyperbole, parabola.  
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Figure 8. An image taken by the conical mirror in a 

corridor. 
 
We have started by considering a cone-shaped 

mirror, which was immediately discarded because 
of the strong distortions it introduces in the image. 
A benefit of this mirror shape lies in the possibility 
to select the pan angle to obtain a wide field of 
vision at will. Working with a spherical mirror, we 
have noticed that it does not modify too much the 
shape of objects, but a large percentage of the 
image is useless because it contains the chassis of 
the underneath robot. With this system we have 
obtained a vision field ranging more than 5 m in 
any direction, but the resolution of the image 
obtained in this way did not match the 
specifications. Therefore, it has been necessary to 
find a trade-off between the bend radius of the 
mirror and the height where it was placed, 
avoiding an excessive reduction of the vision field, 
or its exaggerated opening with drastic reductions 
of the resolution. We have designed a mirror 
composed of a sphere intersecting a reversed cone. 
This shape allows exploiting the characteristics of 
the spherical mirror to a distance of 2 meters, so 
the objects that fall in this range are not much 
deformed and have a satisfying resolution. The 
objects at a distance greater than 2 meters are 
reflected in the conical part of the mirror, designed 
to allow the identification of objects at a distance 
up to 6 m with sufficient resolution. A typical 
image taken from the multipart-mirror is in fig. 9. 

 

 
Figure 9. An image taken in a heat production plant. 

 3.2 Localization of an object with the 
omnidirectional sensor 

For localization purposes, only vertical edges in 
the environment (radial edges on the image) are 
considered. We have developed optimised 
algorithms to detect these edges, whose position is 
estimated with an error of about 2% in distance 
and ±1 degree in position.  

Self localization is based on triangulation on the 
most characteristic edges, selected on the basis of 
their position, their reliability, and their persistence 
in time, during the movement of the robot. 

Knowing the angular and linear speed of the 
robot [u(t),v(t)], let us consider an object (in our 
case an edge) P whose position at time t1 is 
P X Y Z1 1 1 1( , , )  and whose relative speed at time 
( )t t1 +  are [− + − +u t t v t t( ), ( ),1 1 0]. The position 
of P at time ( )t t1 +  is given by [Yagi, 1995]: 
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it is possible to obtain the relationship between 
the azimuth and the position of an object at time 
t1+t as: 
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Knowing the azimuth θ  in two subsequent 
images, it is possible to find the position of the 
object with respect to the robot by triangulation: 
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where 2θ  and 3θ  represent respectively the 

azimuth θ  after a time t2  and t3 . 



 

 3.3 Self-localization with the 
omnidirectional sensor 

The triangulation method proposed above may 
have some problems due to imperfect knowledge 
of the elements used to localize edges in the 
environment. We have faced these problems by 
filtering techniques and heuristics used to select 
the reference edges. Let us discuss these first. We 
only consider edges that can be tracked for 
enough time while the robot is moving. Among 
them, we select a set of relevant edges basing on 
the following considerations. Since the precision 
of the localization is higher for closer edges, these 
are preferred to more distant ones. Since 
localization of the object has higher quality when 
the position of the object detected in two 
subsequent time points is higher, lateral edges are 
preferred to edges in the direction of movement of 
the robot. Moreover, we consider a set of 
reference edges evenly distributed in the azimuth 
space, so to reduce systematic errors. 

A sort of Kalman filtering is done on the track 
of each edge in time. If the robot is not rotating 
with respect to the tracked edge, this follows an 
arctg curve in time. We estimate the expected 
position of the tracked edge at a given time, and 
correct the estimate as the robot proceeds, by 

considering also the information coming from the 
other tracked edges.  

In Figure 10, we show an example of the edge 
tracks. In the right top part of the figure we have 
represented a robot (the hatched rectangle with a 
circle in the middle) moving with respect to an 
object from position A to positions B and C. In the 
lower part of the figure we see the plot of the 
azimuth values for the edges detected by the 
sensor on the robot, during time. At each instant, 
the azimuth values detected are associated to an 
edge already detected, or to a new edge, as it 
happens at point B, where edge number 4 
becomes visible. The shape of the plot can be 
estimated and expectations can be generated. 

 4. FROM POLAR RANGE SENSOR 
MAPS TO SELF LOCALIZATION 

The general problem we address here is to 
localize a robot equipped with a laser polar range 
sensor. A laser polar range sensor measures the 
distance between laser origin and the objects in 
the surrounding environment along several rays 
(at a fixed height from the floor). The rays sweep 
an angle of 180 degrees in front of the robot and 
are equally spaced every 0.5 degrees. 
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Figure 10. A sample movement and the respective edge tracks. 
 



The points acquired from a scan are 
transformed in a set of lines called partial map. 
The devised localization method is actually 
independent from the sensor that perceives the 
partial maps provided that they are sets of 
segments. 

The localization method integrates two partial 
maps called M1 and M2. The method is composed 
of two major steps: 

• find possible transformations of M2 on M1; 
• evaluate every transformation to identify the 

best match between M1 and M2. 
We note that the partial maps are the result of 

the perception activities of a single robot in two 
different locations. They can as well be the result 
of perception of a pair of robots in two different 
locations.  

Let us start by the first step: how to find 
possible transformations. The partial maps are 
analysed in order to extract the landmarks that can 
play as basis to integrate the partial maps together. 
We use corners as landmarks. A corner is an angle 
formed by two segments. A transformation is a 
roto-translation that brings at least one angle of M2 
(say α2) on an equal angle of M1 (say α1). A 
transformation is thus a triple <Xt, Yt, <Xr, Yr, 
θr>>. (Xt, Yt) is the translation needed to move the 
vertex of α2 on the vertex of α1. θr is the rotation to 
move one line of α2 on the same direction of the 
corresponding line of α1. The rotation is centred in 
(Xr, Yr) that is the vertex of α1. 

For each partial map, we look at all angles 
formed by segments in the map. On the basis of 
these angles all the possible transformations are 
generated. 

The second step is the evaluation of the 
transformations. Every transformation found in the 
previous step is evaluated to find the best one. To 
find the measure of a transformation t we move 
M2 on M1 according to t, then we evaluate the 
approximate length of the segments of M1 that 
match with segments of M2. Thus, the measure of 
a transformation is the length of corresponding 
segments. Once the best transformation tb has been 
found, the second partial map M2 is transformed to 
the reference frame of M1 according to tb. In this 
way, the point P corresponding to the origin of M2 
in the reference frame of M1 gives the position of 
the robot while taking the partial map M2. Thus, a 
localization of the robot based only on the 
geometrical feature of the environment id obtained. 

The described method calls for an 
implementation on a parallel computer. For 
example, the process of evaluating the possible 
transformations is composed of a number of 

similar activities, namely evaluate a 
transformation, that operate on different data and 
that can be conveniently distributed over the 
processors of a parallel computer. This could 
improve the performance of the system with 
respect to the sequential evaluation of the 
transformations on a single processor. 

The experimental results of the method are now 
described. The quality of the partial maps acquired 
by the mobile robot in an environment heavily 
depends on the type of environment: corridors are 
mainly composed of long “good” segments, open 
spaces and offices are mainly composed of a mess 
of short “bad” segments. The partial maps used in 
the experiments have been taken by the robot at 
locations where the robot was manually driven. 
The distance between two successive origins of 
scan is about 1 meter. This value has been 
experimentally determined, since we notice that 
with distance between scans greater than 1.5 
meters the integration rarely succeeded (because 
the two partial maps have only a small common 
portion where it is difficult to find good angles for 
transformation). 

It is too expensive to find and evaluate all the 
possible transformations between two partial maps. 
In fact, there can be n1

2n2
2 possible 

transformations, where n1 and n2 are the numbers 
of segments in M1 and M2, respectively. Moreover, 
only few of the possible transformations are 
significant, namely bring the two partial maps in a 
reasonable position. It is obvious that the fact that a 
transformation is significant can be discovered 
only when it is evaluated. We have used four 
possible methods for finding a set of significant 
transformations between the two partial maps. The 
methods adopt different techniques to identify the 
angles on which transformations are based. 

Angles Between Successive Segments. For each 
partial map, we look only at angles between two 
successive segments. The method proceeds in two 
parts: finding the angles in the partial maps and 
finding the transformations between them. We note 
that the first part of the algorithm heavily relies on 
the assumption that the segments in M1 and in M2 
are ordered in some way. 

Angles Between Randomly-Picked Segments. 
For each partial map, we look at angles between 
two segments that are randomly picked up among 
the most significant ones. In order to do this, we 
assign high probability to be picked up to longest 
segments, since they carry the most precise 
information. The method tries first to transform M2 
on M1 according to angles between longest 
(randomly selected) segments. If it is not possible, 
or if the best obtained match is not good enough, 



the algorithm considers shorter and shorter 
segments to find a transformation that gives a good 
match.  

Angles Between Perpendicular Segments. For 
each partial map, we look at angles between 
segments that are perpendicular. This method is 
convenient for indoor environments, where the 
presence of walls usually produces perpendicular 
segments. The method is based on the creation of 
histograms. The histogram of M1 (and, in similar 
way, that of M2) is an array with a number of 
elements equal to the number K of buckets in 
which the possible orientations of segments (from 
0 to π, with respect to a fixed axis) are divided. 
Each element Li of the histogram of M1 is the list 
of segments of M1 with orientation (relative to a 
fixed axis) between π/K*i and π/K*(i+1). To each 
element Li of the histogram of M1 is associated a 
value: the sum of the lengths of the segments in Li. 
The principal direction of a partial map is defined 
as the element of the histogram with maximum 
value. The normal direction of a partial map is 
defined as the element of the histogram that is π/2 
away from the principal direction.  

All Transformations. For each partial map, we 
look at all angles formed by segments in the map 
and generate all the possible transformations. 

Each scan is usually composed of a number of 
segments ranging from 20 to 100, according to the 
kind of environment. The possible transformations 
for a pair of scans range from one hundred to some 
thousands, depending on the method selected and 
on the number of angles in the scans. The time 
required carrying on the whole process of 
integration of two partial maps range from few 
seconds to dozens of seconds on a 700MHz 
Pentium III processor. 

The proposed method is robust with respect to 
changes in the environment in which the robot is 
localizing itself. For example, in Figure 11, in the 
first partial map there is a partially open door (left 
side) while during the scanning of the second 
partial map (the door was closed. The method finds 
the correct integration as in Figure 12. 

 

 
Figure 11. Mapping with a door: open or closed. 
 

 
Figure 12. Final map 

 5. COOPERATIVE LOCALIZATION 
OF MULTI-ROBOT SYSTEMS 

 
In this Section, we propose a framework for the 

cooperative localization of a system consisting of n 
mobile robots. Many results are available on the 
self-localization of single mobile robots (e.g., [Fox 
et al. 1998, Borghi, Caglioti 1998]). Recently, 
attention has been focused towards to multi-robot 
localization: in the work of [Thrun et al. 1999] 
only partial information is maintained (the so-
called factorial representation) about the pose of 
the robots. 

In this section, complete information about 
robot pose is maintained and updated through an 
efficient distributed process: this is made possible 
by adopting Gaussian distributions for the involved 
parameters. In this framework, there is no need for 
any centralized agent: each single mobile robot is 
equipped with one or more sensors (no central 
sensor exists). In addition, the localization is 
performed by updating a current estimate of the 



robot poses in correspondence of each sensor 
measurement: to update the current estimate, the 
robots communicate with each other and update 
locally stored information: again, no central site 
exists, where the whole pose information is stored 
and maintained. The map of the robot environment 
is supposed to be known, modulo moving 
obstacles. Each robot i perform sensor 
measurements, which can be aimed either at the 
environment or at another mobile robot j.  

It is shown that, under broad hypotheses, the 
problem of maintaining and updating pose 
information is scalable, i.e., the time and space 
needed for updating the estimate at each of the n 
mobile robots is of the order of 1/n of the time and 
space that would be needed for update the estimate 
of the robots by a centralized agent. 

The following hypotheses are assumed: 
• the pose estimation errors and the 

measurement errors are supposed to be 
mutually gaussian; 

• the pose estimation errors are kept small 
enough (e.g., by dead reckoning), such that 
the relationships between errors in the 
different parameters can be well 
approximated by linear relations; 

• the computational cost for broadcasting a 
datum from a single robot to the remaining 
ones is O(n). 

First, let us calculate the space complexity and 
the time complexity of updating the pose 
estimation of n robots by means of a centralized 
agent within the above described gaussian 
framework. To correctly update pose estimates, 
both the pose estimates and the self- and mutual-
correlations must be maintained and updated. This 
requires O(n2) time using O(n2) storage, in 
correspondence to each sensor measurement. This 
process is described by the Kalman estimator (1) 
below.  

By using measures related to the relative 
positions between robots (or between a robot and 
the environment), the pose estimate updating 
problem is shown to be scalable: the estimate 
update corresponding to each sensor measurement 
can be performed in O(n) time by distributing the 
process among the n robots. In addition, each robot 
only needs to maintain O(n) data in its memory. 

Now we consider a system consisting of n 
mobile robots, which navigate within a known 
environment. In order to maintain an estimate of 
the pose of the robots, each robot performs a 
sensor measurement aimed either at the 
environment or at another robot. Once such a 
sensor measurement has been performed, the 
measuring robot updates its pose estimate and the 

correlation between its pose and the pose of the 
other robot, and it propagates the information 
towards the remaining robots, which in turn update 
both estimate and correlations. 

Let T
iiii YXx ][ ϑ=  be the vector of the 

pose parameters of the mobile robot i, where 
][ ii YX  are the coordinates of the origin of a 

reference attached to the robot i, while iϑ  is the 
orientation angle of the abscissa axis of this 
reference.  

Let =x  ]...[ 1

T

n
T xx T  

indicate the column vector formed by the pose 
vectors of the n mobile robots. 

Let us indicate by =x  ]...[ 1

T

n
T xx T  the 

vector collecting the current estimates of the poses 
of the robots. Let iiΣ  indicate the 3 x 3 covariance 
matrix of the pose parameters of robot i, and let 

ijΣ  indicate the correlation matrix between the 

pose parameters of robot i and the pose parameters 
of robot j 

The covariance matrix of the pose vector x is 
given by 
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Suppose that a measurement z is taken, whose 
result depends on some of the poses ix : the 
linearization of the relationships between z and x 
can  

z = H x + w, 
where w is a measurement error, which is 

supposed to be independent of x, and H is the 

Jacobian matrix of z with respect to x. If 2σ  is the 
variance of the error w, the a posteriori Kalman 
estimate of the pose parameters, and its covariance 
matrix are given by: 
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Now consider the case where the measurement 
z only depends on the relative pose between robot i 
and robot j: from wxhxhz jjii ++=  the 

expression of H becomes 
]0...00...00...0[ ji hhH =

the expression of THΛ  becomes 
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and the expression of THHΛ  becomes: 
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With these expressions, the a posteriori 
estimates of the poses of the mobile robots are 
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while the a posteriori self-correlations are 
−Σ=Σ kkkk '
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and the a posteriori cross-correlations are 
−Σ=Σ klkl '
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All these expressions can be locally calculated 
by any single robot, using an O(n) storage, in O(n) 
time. In fact, the following information is 
propagated from the measuring robot i  to the other 
ones: the term (2), ih , jh , ji xx ,  . These O(1) 

items only need O(n) time to be propagated to all 
robots. Each robot k can calculate expression (3) 
and (4) in constant time using O(n) storage, while a 
total O(n) time (using O(n) storage) is sufficient to 
calculate the n-1 updated cross-correlations (5): in 
fact the central factor in round brackets is 
immediately calculated from term (2), while the 
other factors are calculated by combining the 
broadcasted terms plus the locally stored terms 

klΣ . 
The obtained result can be summarized by the 

following theorem: 
Theorem.  Under the hypotheses illustrated above, 
the pose estimate updating process is scalable over 
the n robots: in correspondence to any sensor 
measurement, the global pose estimate can be 
updated in O(n) time using O(n) storage at each 
robot. 

A preliminary implementation of the approach 
described in this Section has been carried on two 
mobile robots: one equipped with an orientable 
laser range finder, and the other equipped with an 
omni-directional vision sensor (COPIS). 

Both robots navigate within the hall of our 
Department, whose map is known. After a few 
seconds, any robot performs a sensor 
measurement, either aimed at the other robot, or 
aimed at the environment (according both to 
“visibility” conditions and to uncertainty criteria 
[Caglioti 2001]). 

After each sensor measurement, both robots 
update their pose estimate and the correlation 
matrix. 

An example is reported in Figure13, illustrating 
the estimate updating after Robot 1 performs a 
single range measurement with its laser range 
finder. The estimate update depends not only on 
the measurement result, but also on the current 
estimate and correlation matrix. 

It can be noticed how the global pose estimate 
improves by virtue of the sensor measurement: the 
apparently small estimate variation is due to the 
fact that a single parameter is measured (namely, 
the distance between the range sensor of Robot 1 
and the surface of Robot2 along a certain direction) 
in comparison with the six parameters 
characterizing the global pose of the two robots.  

6. CONCLUSIONS  
The unusual aspects of our integrated 

navigation systems are: simple design, efficient use 
of special properties of the environment, and large 
autonomy.  

Efficiency and reliability are due to various 
factors. The specialization of the environment 
allows the robot to reduce the vision computation. 
The use of simple reactive strategies reduces the 
risk of failures, because obstacle avoidance is 
always active. Finally, the environment does not 
need any modification to insert the robot. As 
illustrated in the previous sections, the uncertainty 
of the world is simply managed through heuristics 
and through a strict use of information only 
obtained through sensors. 

Our results confirm that solutions to the auto 
localizations are available in unstructured 
environments searching for natural landmarks. 
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Figure 13: Updated estimates after a sensor measurement by Robot 1 
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