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Most quantitative structure-activity relationship (QSAR) models are linear relationships and significant for
only a limited domain of compounds. Here we propose a data-driven approach with a flexible combination
of unsupervised and supervised neural networks able to predict the toxicity of a large set of different chemicals
while still respecting the QSAR postulates. Since QSAR is applicable only to similar compounds, which
have similar biological and physicochemical properties, large numbers of compounds are clustered before
building local models, and local models are ensembled to obtain the final result. The approach has been
used to develop models to predict the fish toxicity ofPimephales promelasandTetrahymena pyriformis, a
protozoan.

INTRODUCTION

In our industrialized society, huge and increasing amounts
of chemical substances are used and produced every day.
This increasing number of chemicals around us raises the
problem of characterization, prediction, and evaluation of
their consequences to human health and the environment.

Predictive toxicology is a multidisciplinary science that
requires close collaboration between toxicologists, chemists,
biologists, statisticians, artificial intelligence (AI), and
machine learning researchers. Toxicology provides informa-
tion about mechanisms, rules, and data characterized by
activity levels and defines the safety limits of chemical
agents. Chemistry provides knowledge about chemical
descriptors and physicochemical properties. Biology studies
the mechanisms of action of chemicals on animals and other
organisms used for tests. Statistics and AI (machine learning)
integrates all these items to analyze the existing data and,
especially, extract new knowledge from the data, and
generate reliable toxicity predictions for chemical com-
pounds. In this way, the main drawbacks in the study of
toxicity, such as the high cost of experiments, the long
duration of tests, and the use of animals in scientific
experiments,1 can be surmounted.

Quantitative structure-activity relationships (QSARs) can
be developed using continuous (quantitative) data, mostly
through a regression process but also through classification.2,3

This area has been developed in the last 40 years to assess
the value of drugs and more recently has been proposed as
a way of assessing general toxicity and also to obtain new
knowledge from data.3

The theoretical basis of classical QSAR is usually ex-
pressed through the following postulates.3

P1, the molecular structure is responsible for all the
activities shown.

P2, similar compounds have similar biological and phys-
icochemical properties.

P3, QSAR is applicable only to similar compounds.
In the field of toxicity prediction and QSAR modeling,

various AI techniques have been proposed and developed:
artificial neural networks (ANNs),4-7 statistical learning
networks8 expert systems,9,10 or hybrid approaches such as
neuro-fuzzy models.11 Combinations of the basic techniques,
in either a competitive or a cooperative fashion, have been
developed and sometimes preferred to single approaches for
constructing the solution.12,13

The aim of our investigation was to use ANNs following
the QSAR postulates to obtain models that predict the toxicity
of large groups of different chemicals using information
related to chemical structure, biological and physicochemical
properties (P1). The first step was to group together similar
compounds (P2) using unsupervised neural networks; then
we built local QSAR models (supervised neural networks)
for each group of similar chemicals (P3). The idea is
represented in Figure 1.

Inspired by the biological nervous system, ANNs are
composed of simple elements operating in parallel.14 They
can be supervised (e.g., back-propagation networks) or
unsupervised (e.g., self-organization networks).

Self-organization within networks is a fascinating topic
in the neural network field. Such networks can learn to detect
regularities and correlations in their input data and adapt their
future response to that input. The neurons of competitive
networks learn to recognize groups of similar vectors and
separate dissimilar ones (clustering).15

A supervised ANN learns from input-output pair ex-
amples to build an external relationship between the input
and output. For this purpose, input vectors and the corre-
sponding output vectors are presented to train the network
until it manages to approximate a mathematical function
between them.

The most commonly used ANN is the fully connected
forward network with three layers (input, hidden, output).
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The reason for this fact is a theorem16 which demonstrates
that a network of this kind is capable of approximating any
continuous function.

ANNs have been used for several years to develop models
to predict toxicity within a monolithic approach, i.e., using
all molecules in the same system.6,7 Conversely, in the case
of heterogeneous data sets, several studies split the data set
according to chemical classes or mode of action (MOA).13,17,18

Here we studied a different perspective: to predict toxicity,
we used ANN applied to clusters of molecules obtained with
self-organized neural networks. Mixtures of experts19 are a
known possible way to improve the prediction capability of
a system. Our mixture uses a gating function to combine
different individual networks, each built on a subspace of
the problem.

MATERIALS AND METHODS

Data Sets. In this paper we used two data sets connected
with aquatic toxicity. One is based on the U.S. Environmental
Protection Agency (EPA) study referring to acute toxicity
in the fathead minnow fish (Pimephales promelas).18 The
second set was processed from the TETRATOX database
and contains information about the inhibition of growth
determined by chemical agents to a protozoan ciliate
(Tetrahymena pyriformis) [See http://www.vet.uk.edu/TET-
RATOX/].

The first data set contains 568 different chemicals for
which a large number (about 190) of descriptors were
calculated using different software systems (Hyperchem 5.0,
Hypercube Inc.; CODESSA 2.2.1, SemiChem Inc; Pallas 2.1,
ComGenex, Hungary). The descriptors specify each com-
pound in a mathematical way, and according to CODESSA,20

they can be divided into several groups: quantum chemical,
constitutional, topological, geometrical, and physicochemical.
The output is the logarithmic value for the lethal concentra-
tion for 50% of a population of animals within 96 h: log
LC50 (96 h) measured in mmol/L.

The second data set has 724 compounds. The output is
log IGC50 (mmol/L), which means the logarithmic value of
the concentration that determined the inhibition of growth
for 50% of the ciliates. Descriptors were as described above.

Clustering. Our clustering problem can be formulated in
a mathematical way: we want to approximate a function

wheren ∈ N is the number of inputs (descriptors), when we
have a set of training pairs

where m∈ N is the number of training cases,xji ∈ D, for i
) 1, ...,m are the input vectors andyi ) f (xji) for i ) 1, ...,
m are the corresponding outputs.

The domain of this function can be divided intoK
subdomains

whereDi ⊆ Rn andDi , Dj ) L, for i,j ) 1, ...,K,I * j and
f/Di ) fi, for i ) 1, ...,K.

According to the divide-and-conquer method, the initial
problem was separated intoK subproblems. Now we have
to approximateK functions with simpler behavior of their
domains instead of one function with very complicated
behavior.

To solve this problem we performed the following steps.
(1) We built and trained a self-organized neural network,

according to the vector quantization algorithm and using
Euclidean distance, to split the initial training data into a
given number of clusters and obtained training sets for the
domainsDi, for i ) 1, ...,K, whereK is the number of stated
clusters.

(2) For every cluster we built and trained a feedforward
neural network to approximate the functionfi ) f/Di: Di ⊆
Rn f R with the functionFi ) Di ⊆ Rn f R.

(3) We obtained

whereF is the approximation function forf.
Implementation of the Networks. To implement this

approach we used inhouse Matlab (Mathworks Inc.) scripts
to build, train, and evaluate the neural networks using the
data presented and discussed in the second section.

Figure 1. Model building and combination procedure.

f: D ⊆ Rn f R (1)

(xj1, y1), ..., (xjm, ym)

D ) D1 ∪ D2 ∪ . . . ∪ DK (2)

F(x) ) {F1(x), x ∈ D1

F2(x), x ∈ D2

‚
‚ (∀)x ∈ D ) D1 ∪ D2 ∪ ... ∪ DK

‚
FK(x), x ∈ DK

(3)
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From the initial data sets we excluded any descriptors with
missing values and nonvariant descriptors (constant values
for all chemicals). After removal, we obtained 156 descrip-
tors.

Every data set was sorted into ascending order according
to the output, and every fourth and eighth member from 10
consecutive compounds were extracted to obtain the test set
in order to widely cover the whole space. Thus, we had 80%
of the chemicals in the training set and 20% in the external
test set. Then 10% from the training set were held back to
build the validation set which was used to improve the
generalization capability of the networks in the early stopping
approach.21

The values were scaled to the [-1,1] interval to consider
all descriptors on the same basis.

Afterward, we built and trained a competitive network to
group the training sets into different clusters only for the
input space.

Finally, for every cluster, the training data was used to
build and train the supervised neural networks with one
hidden layer and one output. The transfer function for the
hidden layer was sigmoidal (‘tansig’)21 and for the output
layer a linear function (‘purelin’). The training function is
‘traingdx’, which updates the weights and biases according
to the gradient descend momentum and adaptive learning
rate.

RESULTS AND DISCUSSION

The considered data sets contain a diversity of compounds
with a diversity of structures. Because of the lack of
homogeneity, it is hard for a single technique to model these
data and obtain good results. In previous research13 we built
a single model with linear regression on the whole data set
and obtained a determination coefficientR2 in 10-fold cross-
validation of only 0.55. After reducing the number of
descriptors with a wrapper approach, we reached 0.7. Results
improved after mixing different experts for different chemical
classes.

In this paper, instead of some official, predefined clas-
sification, we grouped the chemicals inside the input space
(the descriptor space) via a clustering technique using the
Euclidian distance function. For clustering we used un-
supervised neural networks. Subsequently, we constructed
toxicity models for the obtained groups of chemicals. For
the toxicity models we used supervised neural network.

In our clustering studies output values were not used. The
number of clusters ranged between 2 and 15. The test data
was split in the appropriate clusters.

In making the experiments with different numbers of
clusters it became clear that this number strongly influences
the result. Generally speaking, we expected that more clusters
would produce a more detailed and better final model and
improve the performance. However, we observed that this
improvement was stopped or lowered having reached a
particular number of clusters. Furthermore, after a certain
point some clusters remain empty (without data), which
indicates that the final number of clusters had been reached.
Table 1 shows for each data set the distribution of the data
for the number of clusters used to construct the final model.

After building all clusters the dimension of the training
data was reduced, eliminating the descriptors correlated with

R greater than 0.9. The use of a relatively small number of
input descriptors can reduce the risk of over-fitting the
networks.

Over-fitting is the main risk, in general, in QSAR, and in
particular, in the case of neural networks, even more risk if
a high number of inputs (chemical descriptors) is used
associated with a low number of molecules. Indeed, “as long
as the net structure has enough complexity, a neural net can
be trained to produce any desirable error level on the training
set. In order to determine a net’s ability to generalize, it must
be evaluated on a test data set which was not used during
the training.”22 For this reason, we tested all models using
the external test sets and reduced the number of descriptors.

The cluster of chemicals as we did is homogeneous on
the basis of the chemical descriptors. The cluster mimics
the classes, which have been used in other modeling
studies: classes determined on the basis of the chemical
classification or toxic mode of action. However, here we used
an automatic way to split the domain of the chemical
compounds studied.

Then, for each cluster we modeled toxicity, using super-
vised neural networks, using as inputs the selected chemical
descriptors. The performance of the local models, one for
each cluster, can be seen in Table 2. It is clear that not every
cluster could be modeled with the same high level of
accuracy; an example is cluster 6 of data set 2. However,
most of the local models are highly predictive. This positively
affects the performance of the final combined model, which
assigns the model from the cluster the new chemical belongs
to according to the paradigm of competitive strategy in
“mixture of experts”.19

Figures 2 and 3 show for data sets 1 and 2, respectively,
the performance of the mixture model on the test set,

Table 1. Distribution of the Training and Test Data in Clusters of
the Two Data Sets (number of descriptors in parentheses)

data set 1 (156)
568 items

data set 2 (264)
724 items

clusters train test train test

1 43 12 50 9
2 53 13 119 23
3 46 8 120 38
4 50 10 65 32
5 58 15 109 15
6 35 15 116 28
7 36 10
8 52 16
9 81 15
total 454 114 579 145

Table 2. Performance on Test Data of the Different Modelsa

data set 1 data set 2

model MSE MAE MSE MAE

1 0.45 0.48 0.09 0.23
2 0.38 0.51 0.14 0.27
3 0.05 0.21 0.16 0.30
4 0.13 0.31 0.35 0.47
5 0.15 0.35 0.27 0.42
6 0.16 0.35 0.43 0.49
7 0.46 0.58
8 0.32 0.41
9 0.14 0.31

a MSE ) mean-squared error. MAE) mean absolute error.
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summarizing the data obtained for the data sets. It is worth
mentioning that the results on the training data were slightly
better than the results on the test sets, which indicate that
models were able to generalize their performance. The
models achieved low prediction errors and a high correlation
between the values predicted by the models and the target
values.

The predictive models for toxicity of heterogeneous data
sets can be monolithic or split the heterogeneous data sets
into subsets to simplify the modeling task, thereby reducing
the heterogeneity. Some monolithic models obtained good
results on the same or bigger data sets related to fathead
minnow.6,23 On a smaller data set (130 compounds) other

studies have been conducted, achieving a value for the
determination coefficient R2 greater than 0.9, using ANNs,
but with a more limited test set (10 compounds).24

ForTetrahymena pyriformis,studies have been performed
on a smaller number of compounds and using data sets more
homogeneous than ours; for instance, 476 aliphatic com-
pounds25 and about 200 phenols were used.17,26

There have been several studies using neural networks for
toxicity prediction and QSAR. Unsupervised systems, such
as self-organizing maps (SOM), have been used in QSAR
to reduce the number of chemical descriptors or split the
chemicals in QSAR sets. For instance, Arciniegas et al. used
SOM to reduce the number of chemical descriptors for the

Figure 2. Performance on the external test set for data set 1.

Figure 3. Performance on the external test set for data set 2.
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design of novel pharmaceuticals.22 Similarly, SOM have been
employed to obtain the subset of descriptors for the evalu-
ation of toxicity.27 SOM have been used to select the training
and validation sets, maximizing the molecular diversity,23

in the case of toxicity prediction or in a study on dihydro-
folate reductase inhibitors, generating training, cross-valida-
tion, and prediction sets.28

Instead, in our study unsupervised neural networks have
been used to identify homogeneous sets of compounds to
be used for successive modeling. Monolithic systems are less
flexible and require a complete rebuilding in order to be
improved, for instance, to include new chemicals. Con-
versely, systems that use different submodels are more easily
modifiable and flexible and, in principle, can model more
accurately the different situations present in heterogeneous
sets of molecules.

To overcome the diversity of the data, attempts of
subdividing the set using the official chemical classification
from EPA were presented; in one case chemical classes were
defined by chemists, while in another one chemical classes
were assigned by an algorithm.29,13After “manual” selection
of the chemical class and using multivariate analysis for
predictive models,R2 was about 0.75 with the leave-one-
out procedure but for alcohols and ketones/aldehydes.29

Results for the predictive models obtained after automatic
classification of chemical classes gave a value forR2 of 0.80
on the combined model with a 10-fold cross validation.13

Both approaches improved the basicR2 of 0.55 of the simple
monolithic model.

The splitting in chemical classes is an apparently simple
approach; however, the splitting is performed according to
a taxonomy, which has been developed by chemists on the
basis of knowledge which is external to toxicology. Hence,
it could happen that different chemical classes can act
according to the same toxic mechanism and vice versa; some
apparently minor chemical differences can produce high
differences in toxic activities.12,18Furthermore, classification
into chemical classes is sometimes ambiguous because more
than one functional group could be present in the same
molecule; thus, it is possible to classify a compound into
many chemical classes.

Another possibility, which has been evaluated, is to split
chemicals according to their MOA.18 The general problem
is that the MOA is not known a priori, and thus studies have
been performed to predict MOA.17,18

The procedure we used here is different. The classification
we adopt is not based on chemical classes or a MOA.
Actually the nature of the knowledge which is used for the
classification is not physical. This knowledge does not rely
on laboratory experiments, such as those used to obtain the
MOA, and is not related to chemist’s knowledge of functional
groups. Conversely, the knowledge we use is obtained by
an automatic process (the self-organizing networks) that
produces virtual knowledge (the clusters), which is used to
build up prediction models. For this reason, it is more
appropriate to speak about clusters than classes.

CONCLUSIONS

Our results on toxicity prediction are promising and
suitable for future research. The predictive capability is
comparable to that obtained with the best models published

so far on the same data set, and the approach is original.
The approach we used was to obtain clusters of chemicals
and then produce predictive models. Chemical descriptors
were used to afford chemical information, while parallel
computing was used for both clustering and predictive
models.

Our approach is far from complete, but it has the advantage
of being modular, which makes it more flexible than holistic
approaches. Monolithic approaches have the advantage of
simplicity, but in order to make progress, they require a
complete rebuilding of the model. The combination of local
experts presented here has some advantages:

• the reliability of the models for different clusters is more
clearly recognized and defined;

• it offers a simple opportunity to study the weaker
submodels; using a flexible architecture, submodels can be
easily modified, introducing better models, or even integrated
with new, independent submodels.
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