

POLITECNICO DI MILANO

Department of Electronics and Information (DEI)

poliGMDH (NeuralNetwork v. 4)
User Guide

1. Installation and execution of the Java development environment program and
of poliGMDH.

Java(TM) 2 SDK, Standard Edition is a development environment for building java
applications, applets, and/or components. The version of the Java machine to run the
program is 5.

The poliGMDH application has been checked with Windows XP, MAC OS X, Linux..
A minimum availability of 300Mb RAM is necessary.

1 The Java 2 SDK, Standard Edition, is a product of Sun Microsystems(TM), Inc. This product includes
code licensed from RSA Security. Copyright 2002 Sun Microsystems, Inc., 901 San Antonio Road, Palo
Alto, California 94303, U.S.A. All rights reserved.

2. functions in poliGMDH.

2.1. Why Use poliGMDH.

The present implementation of poliGMDH builds a Neural Network starting from a
training set given in XML format. The net is saved in XML format for future recalling.
There is a also a validation step based on the computation of R2 on an external test set.

Different uses of the system are possible in model construction and data mining. Any
user has the ability of stand-alone modeling and information management via the toolbox
apart of the programs graphical user interface (GUI).

GMDH is the realization of an inductive approach for mathematical modeling of complex
systems. Basically it incrementally builds a multilayer network, beginning with the
combination of the input layer neurons. This generates an internal layer and then it
‘prunes’ all neurons, selecting the best. New layers are continually added, ‘pruning’
them until a final usable) criterion is met.

Hence creating models in the program where the user can make estimations for single
chemicals, retrieve the results of all the QSAR estimates for any models covering the
appropriate chemical domain. The user can receive summary information on the
validation results of the models used.

2.2. Building a network.

A new neural network is simply built by following the steps indicated herein.

As depicted in figure 1, the File menu has a list of options pertaining to a networks
construction, saving and configuring in the XML standard.

There are three polynomials of choice to construct a network, before any data is passed.

• Ivakhnenko polynomial
• Bi-Quadratic polynomial
• Exponential polynomial

These polynomials available to the user define the type of networks which can be
constructed. Modeling requires a system that yields a continuous answer by means of a
polynomial from each input of the function.

To commence, click on the File tab and choose New, then choose the desired polynomial.

A GMDH network has neurons of two types: distribution neurons and executive neurons.
Distribution neurons are only contained in input layer. They distribute components of the
input vector to the neurons of first hidden layer. Executive neurons form all other layers.
These neurons have primary influence on the behaviour of the network. Each neuron has

exactly two inputs and one output, applied to the neurons of next layer. There are applied
signals from outputs of previous layer to the inputs.

Figure 1: General architecture of a neuron with two inputs

Three polynomials are available to the user to define the type of input combination.

a -- The Ivakhnenko polynomial

This is expressed by the following equation:

y1 = Ax1x2 + Bx1
2 + Cx2

2 + Dx1 + Ex2 + F
Every element in the network implements a non linear function of its input. One of
them has two inputs (zik-1 & zjk-1) and only one output (zmk). The transfer function
is a quadratic polynomial type in the form:

zmk = amk (zik-1)² + bmk (zik-1)(zjk-1) + cmk (zjk-1)² + dmk zik-1 + emk zjk-1 + fmk

The output can be expressed in an array function of the input x: y = f(x)

b --The Modified bi-quadratic polynomial

This is expressed by the following equation:

y2 = Ax1x2 + Bx1 + Cx2 + D

It is derived from the Ivakhnenko polynomial in a simplified form:

zmk = amk (zik-1)(zjk-1) + bmk zik-1 + cmk zjk-1 + dmk

Where the single quadratic terms do not match, but the only second grade term is
the mixed term related to evaluation, this function provides the best results in
respect to the coefficient of determination.

c-- The Exponential function

This is expressed by the following equation:

y3 = exp[-(y2
2)]

This function is introduced as an innovative experimentation, presented as:

zmk = exp{-[amk (zik-1)(zjk-1) + bmk zik-1 + cmk zjk-1 + dmk]²}

The expression between the square parentheses is the bi-quadratic polynomial
function already introduced.

Figure 2: To create a new neural network, example; an Ivakhnenko polynomial

From here you must determine the output parameter for which the network is to be
constructed. That is, for the predefined dataset (datafile with .xdat extension) which is a
table of numbers, in which the first columns represent the inputs, and the last columns
represent the outputs.

Figure 3 depicts where to type in the path of which the datafile is located, or alternatively
click on “Browse...” to select from the files available on the computer.

Figure 3: Possibility of viewing and altering data of network

An option to choose the maximum number of neurons per layer is available. By
restricting the number of neurons, this can possibly reduce the accuracy of the network.

To select the desired datafile, click on “loading data” then you will be prompted to
normalize this datafile. To normalize a datafile, is to scale and/or transform it. In most
cases, it should be the nature of the problem rather than the method of solving it that
dictates the criteria for normalizing input variables).

Secondly decide whether you would like a logarithmic output. A logarithmic output will
allow for a logarithmic graph to be depicted in the program.

The table containing the data (as in figure 3) will be displayed. To select the order, you
must choose from the variation of the increasing outlay to the variation of the decreasing
output. Finally, specify the name of the file with a .gnn extension in order to save the
created network.

Once a network has been established the user has several options available from the GUI.
Testing it is possible with combinations of other items and to also analyze the
constituents of the particular network.

The following pages are available from the tabs at the top of the programs screen:

• Network parameter
• Trend error
• Network topology
• Network usage
• Network accuracy
• Regression of function

Figure 4 Networks layers constituents (parameters)

As the network has been constructed, the initial of the six tabs is automatically displayed.
Network Parameter is displayed in figure 4 which is separated in two sections. The left
section has the lists for selecting between layer number and neuron number. This allows
the user to select various layers and neurons (in layers) and eventually view the
constituents of the layers (in the right section of the page). A network physically begins
(on the left) with the “father no.1” then “father no.2” columns of neurons, then followed
by ‘x’ number of parameters (columns). This is how the layout of the network
parameters tab is described.

Figure 5: Networks trend error

The Trend error presented on the second tab (figure 5) depicts a graph of the trend of the
network. This graphic of the MSE (visualization) is the system which is referenced when
one begins the creation of a new network. When a network is being trained, it continues
to do this until the MSE curve increases too much.

Figure 6: One of the six pages to view or alter the network: here we use the net topology

A networks topological structure can be viewed from the third tab (figure 6), which
illustrates the general structure of the obtained network.

Figure 7: Network usage with the number of inputs

One can reference other inputs to a constructed network by means of the fourth tab,
Network usage, which is shown in figure 7. Dependant on the current network being
used determines the number of inputs which can be entered on this page and ultimately
calculated via the “Activate” button adjacent the column of input values on the same
page.

Figure 8: Network accuracy by comparison with original dataset

The creator of the network can make a comparison with the original dataset used for the
current (possibly trained) network. By simply clicking on the load button of the fifth tab
(network accuracy of figure 8) one can access the original .xdat dataset (or any other)
which in turn graphically displays the calculations of the coefficient of determination
against the current network, (the predicted (red) values against the real (blue) values).

The usage of the ‘COD parameter’ button (R2), the coefficient of determination represents
the fraction of variability in y that can be explained by the variability in x. In other words,
R2 explains how much of the variability in the y can be explained by the fact that they are
related to x, i.e., how close the points are to the regression line.
o If a model has perfect predictability, R²=1.

o If a model has no predictive capability, R²=0.

If the regression function is linear (yba = a + bx), the coefficient is the square of the
linear correlation coefficient.

COD (R2) can be expressed mathematically as:

where

yi observations

ybar the mean of y

 residual, or what’s left over after the regression has
explained away all the variability of the dependent variable.

Figure 9: Calculation of “Regression Function”

When building a regression function to approximate a set of observations, R2 or COD
explains how much of the variability in the y can be explained by the fact that they are
related to x, i.e., how close the points are to the regression line. The regression function
can be calculated and hence visualized in the last tab of the program, regression of
function depicted in figure 9 above. In the case of a comprehensive network, some time
is required for the program to do the calculations of the regression function upon the
usage of the button “Calculate the function of regression”.

Once the net is considered good, the user can save it in XML format. The net is ready for
recalling on new data.

To open a network (model recall) one must use the File menu as per new models, but
initially you must specify the type of network desired.A trained network differs from
untrained networks. As cited earlier, training a model requires normalization and the
like. Such as the creation of a network, model building with the possibility to select
different transfer functions must have occurred. Then a training set could have been
expressed in XML format, with or without normalization. One must be aware of this
when opening a model for any intention of manipulating the pre existing network.

